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Abstract

The twelfth Peregrine breather (P12 breather) solution to the focusing
one dimensional nonlinear Schrödinger equation (NLS) with its twenty two
real parameters deformations solutions to the NLS equation are explicitly
constructed here. New families of quasi-rational solutions of the NLS
equation in terms of explicit quotients of polynomials of degree 156 in x

and t by a product of an exponential depending on t are obtained. The
patterns of the modulus of these solutions in the (x; t) plane, in function
of the different parameters are studied in details.

PACS : 35Q55, 37K10.
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1 Introduction

Since the first resolution of the one di-
mensional focusing nonlinear Schrödin-
ger equation (NLS) in 1972 by Zakharov
and Shabat using the inverse scattering
method [1, 2], a lot of studies have been
carried out. The first quasi-rational so-
lution to NLS equation was constructed
in 1983 by Peregrine [3]. Akhmediev,
Eleonskii and Kulagin obtained the two-
phase almost periodic solution to the
NLS equation and obtained the first
higher order analogue of the Peregrine
breather [4, 5] in 1986; other families of
higher order 3 and 4 were constructed
in a series of articles by Akhmediev et
al. [6, 7], using Darboux transforma-
tions.
Since the beginning of the years 2010,
many works were published using var-
ious methods, in particular a formula-
tion by means of wronskians was given
in [8]. Recently, in 2013, it was found
in [9], solutions expressed in terms of
determinants of order 2N depending
on 2N−2 real parameters. A new rep-
resentation has been found as a ratio
of a determinant of order N +1 by an-
other one of order N by Ling and Zhao
in [10]. Very recently in 2014, another
approach has been given in [11] using
a dressing method where the solutions
are expressed as the quotient of a de-
terminant of order N + 1 by another
one of order N .

In the present work, we construct new
solutions to the focusing one dimen-
sional nonlinear Schrödinger equation
which appear as deformations of the
(analogue) Peregrine breather of order
12 with 22 real parameters. These so-
lutions are completely expressed as a
quotient of two polynomials of degree
156 in x and t by an exponential de-

pending on t. Because of the length of
the solutions in terms of polynomials
of x and t, we cannot give them in this
text; only plots in the (x, t) plane of the
modulus of the solutions to analyze the
evolution of the solutions in function of
the different parameters are presented
in details here.

2 Determinant represen-

tation of solutions to

NLS equation

In [16, 32] the following result have been
proved :

Theorem 2.1 The function v defined

by

v(x, t) =
det((njk)j,k∈[1,2N]

)

det((djk)j,k∈[1,2N]
)
e(2it−iϕ)

is a quasi-rational solution to the NLS

equation

ivt + vxx + 2|v|2v = 0,

where

nj1 = fj,1(x, t, 0),

njk =
∂2k−2fj,1
∂ǫ2k−2 (x, t, 0),

njN+1 = fj,N+1(x, t, 0),

njN+k =
∂2k−2fj,N+1

∂ǫ2k−2 (x, t, 0),
dj1 = gj,1(x, t, 0),

djk =
∂2k−2gj,1
∂ǫ2k−2 (x, t, 0),

djN+1 = gj,N+1(x, t, 0),

djN+k =
∂2k−2gj,N+1

∂ǫ2k−2 (x, t, 0),
2 ≤ k ≤ N, 1 ≤ j ≤ 2N
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The functions f and g are defined for
1 ≤ k ≤ N by :

f4j+1,k = γ4j−1
k sinAk,

f4j+2,k = γ4j
k cosAk,

f4j+3,k = −γ4j+1
k sinAk,

f4j+4,k = −γ4j+2
k cosAk,

f4j+1,N+k = γ2N−4j−2
k cosAN+k,

f4j+2,N+k = −γ2N−4j−3
k sinAN+k,

f4j+3,N+k = −γ2N−4j−4
k cosAN+k,

f4j+4,k = γ2N−4j−5
k sinAN+k,

g4j+1,k = γ4j−1
k sinBk,

g4j+2,k = γ4j
k cosBk,

g4j+3,k = −γ4j+1
k sinBk,

g4j+4,k = −γ4j+2
k cosBk,

g4j+1,N+k = γ2N−4j−2
k cosBN+k,

g4j+2,N+k = −γ2N−4j−3
k sinBN+k,

g4j+3,N+k = −γ2N−4j−4
k cosBN+k,

g4j+4,N+k = γ2N−4j−5
k sinBN+k,

(1)

The argumentsAν andBν of these func-
tions are given for 1 ≤ ν ≤ 2N by

Aν = κνx/2 + iδνt− ix3,ν/2− ieν/2,
Bν = κνx/2 + iδνt− ix1,ν/2− ieν/2.

The terms κν , δν , γν are defined by
1 ≤ ν ≤ 2N

κj = 2
√

1− λ2
j , δj = κjλj ,

γj =
√

1−λj

1+λj
, κN+j = κj ,

δN+j = −δj , γN+j = 1/γj ,
1 ≤ j ≤ N,

(2)

where λj are given for 1 ≤ j ≤ N by :

λj = 1− 2j2ǫ2, λN+j = −λj . (3)

The terms xr,ν (r = 3, 1) are defined
for 1 ≤ ν ≤ 2N by :

xr,ν = (r − 1) ln γν−i
γν+i

. (4)

The parameters eν are given by

ej = i
∑N−1

k=1 ãjǫ
2k+1j2k+1

−
∑N−1

k=1 b̃jǫ
2k+1j2k+1,

eN+j = i
∑N−1

k=1 ãjǫ
2k+1j2k+1

+
∑N−1

k=1 b̃jǫ
2k+1j2k+1,

1 ≤ j ≤ N,

(5)

3 Quasi-rational solutions

of order 12 with twenty

two parameters

We have already explicitly constructed
quasi rational solutions to NLS equa-
tion from order 2 until 11. We con-
struct here deformations of the Pere-
grine breather P12 of order 12 depend-
ing on 22 parameters. We do not give
the analytic expression of the solution
to NLS equation of order 12 with twenty
two parameters. The computations were
done using the computer algebra sys-
tems Maple and TRIP [38]. For sim-
plicity, we denote

d3 := det((njk)j,k∈[1,2N]
),

d1 := det((djk)j,k∈[1,2N]
).

The number of terms of the polynomi-
als of the numerator d3 and denomi-
nator d1 of the solutions are shown in
the table below (Table 1) when other
ai and bi are set to 0.
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N=11 number of terms
d3(a1, b1, x, t) 1535989
d1(a1, b1, x, t) 777834
d3(a2, b2, x, t) 579793
d1(a2, b2, x, t) 293604
d3(a3, b3, x, t) 310973
d1(a3, b3, x, t) 157500
d3(a4, b4, x, t) 196817
d1(a4, b4, x, t) 99668
d3(a5, b5, x, t) 196817
d1(a5, b5, x, t) 70052
d3(a6, b6, x, t) 138317
d1(a6, b6, x, t) 52513
d3(a7, b7, x, t) 81416
d1(a7, b7, x, t) 41240
d3(a8, b8, x, t) 65909
d1(a8, b8, x, t) 33334
d3(a9, b9, x, t) 52787
d1(a9, b9, x, t) 26728
d3(a10, b10, x, t) 38627
d1(a10, b10, x, t) 19547
d3(a11, b10, x, t) 21558
d1(a11, b10, x, t) 10908

Table 1: Number of terms for the poly-
nomials d3 and d1 of the solutions of
the NLS equation.

We construct figures to show defor-
mations of the Peregrine breather of
order 12. We get different types of
symmetries in the plots in the (x, t)
plane. We give some examples of this
fact in the following discussion.

3.1 Peregrine breather of or-

der 12

If we choose ãi = b̃i = 0 for 1 ≤ i ≤ 10,
we obtain the classical eleventh Pere-
grine breather

Figure 1: Solution of NLS, N=12,
all parameters equal to 0, Peregrine
breather P12.

3.2 Variation of parameters

With other choices of parameters, we
obtain all types of configurations : tri-
angles and multiple concentric rings con-
figurations with a maximum of 78 peaks.

Figure 2: Solution of NLS, N=12, ã1 =
103 : triangle with 78 peaks; on the
right, sight from top.
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Figure 3: Solution of NLS, N=12, b̃1 =
103 : triangle with 78 peaks; on the
right, sight from top.

Figure 4: Solution of NLS, N=12, ã2 =
105 : 7 rings with 5, 10, 10, 10, 20, 10,
10,peaks on each of them with in the
center P2; on the right, sight from top.

Figure 5: Solution of NLS, N=12, b̃2 =
105 : 7 rings with 5, 10, 10, 10, 20, 10,
10,peaks on each of them with in the
center P2; on the right, sight from top.

Figure 6: Solution of NLS, N=12, ã3 =
106 : 7 rings with 7, 14, 7, 21, 14, 7,
7 peaks with in the center P1; on the
right, sight from top.
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Figure 7: Solution of NLS, N=12, b̃3 =
106 : 7 rings with 7, 14, 7, 21, 14, 7,
7 peaks with in the center P1; on the
right, sight from top.

Figure 8: Solution of NLS, N=12, ã4 =
108 : 6 rings with 9, 18, 9, 9, 19, 9
peaks, in the center P3; on the right,
sight from top.

Figure 9: Solution of NLS, N=12, b̃4 =
108 : 6 rings with 9, 18, 9, 9, 19, 9
peaks, in the center P3; on the right,
sight from top.

Figure 10: Solution of NLS, N=11,
ã5 = 1011 : 6 rings of 11, 11, 22, 11,
11, 11 peaks one peak in he center; on
the right, sight from top.
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Figure 11: Solution of NLS, N=11,
b̃5 = 1011 : 6 rings of 11, 11, 22, 11,
11, 11 peaks one peak in he center; on
the right, sight from top.

Figure 12: Solution of NLS, N=12,
ã6 = 1013 : 6 rings with 13 peaks with-
out peak in the center; on the right,
sight of top.

Figure 13: Solution of NLS, N=12,
b̃6 = 1013 : 6 rings with 13 peaks with-
out peak in the center; on the right,
sight of top.

Figure 14: Solution of NLS, N=12,
ã7 = 1015 : 5 rings with 15 peaks and
in the center the Peregrine breather of
order 2; on the right, sight from top.
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Figure 15: Solution of NLS, N=12,
ã7 = 1015 : 5 rings with 15 peaks and
in the center the Peregrine breather of
order 2; on the right, sight from top.

Figure 16: Solution of NLS, N=12,
ã8 = 1018 : 4 rings with 17 peaks and
in the center the Peregrine breather of
order 4; on the right, sight from top.

Figure 17: Solution of NLS, N=12,
b̃8 = 1018 : 4 rings with 17 peaks and
in the center the Peregrine breather of
order 4; on the right, sight from top.

Figure 18: Solution of NLS, N=10,
ã9 = 1020 : 3 rings with 19 peaks and
in the center the Peregrine breather of
order 6; on the right, sight from top.
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Figure 19: Solution of NLS, N=10,
b̃9 = 1020 : 3 rings with 19 peaks and
in the center the Peregrine breather of
order 6; on the right, sight from top.

Figure 20: Solution of NLS, N=12,
ã10 = 1020 : two rings with 21
peaks and in the center the Peregrine
breather of order 8; on the right, sight
from top.

Figure 21: Solution of NLS, N=12,
b̃10 = 1020 : two rings with 21
peaks and in the center the Peregrine
breather of order 8; on the right, sight
from top.

Figure 22: Solution of NLS, N=12,
ã11 = 1020 : one ring with 23
peaks and in the center the Peregrine
breather of order 10; on the right, sight
from top.
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Figure 23: Solution of NLS, N=12,
b̃11 = 1020 : one ring with 23 peaks and
in the center the Peregrine breather of
order 10; on the right, sight from top.

4 Conclusion

Among the various methods currently
built to determine explicit solutions of
the nonlinear Schrdinger equation, by
using the transformations of Darboux
[6, 7, 39], the bilinear method of Hirota
[40], the ratio of special determinants
[10, 11] or the wronskiens [41, 16, 32],
the method presented in this text is the
most effective.
We have constructed explicitly multi-
parametric solutions to the NLS equa-
tion of order 12 with 22 real param-
eters. The explicit representation in
terms of polynomials of degree 156 in
x and t is obtained. We cannot give
its expression because of his length. It
confirms the property about the shape
of the breather in the (x, t) coordinates,
the maximum of amplitude equal to
2N + 1 and the degree of polynomials

in x and t here equal to N(N + 1).
We obtained different patterns in the
(x; t) plane by different choices of these
parameters. So we obtain a classifica-
tion of the rogue waves at order 12.
We obtain two types of patterns : the
triangular shape and the concentric rings
for the same index i for ai or bi non
equals to 0.
In the cases a1 6= 0 or b1 6= 0 we ob-
tain triangles with a maximum of 78
peaks; for a2 6= 0 or b2 6= 0 , we have
7 rings with 5, 10, 10, 10, 20, 10, 10
peaks with in the center the Peregrine
P2. For a3 6= 0 or b3 6= 0, we obtain 7
rings with 7, 14, 7, 21, 14, 7, 7 peaks
with in the center one peak. For a4 6= 0
or b4 6= 0, we have 6 rings with 9, 18,
9, 9, 18, 9 peaks with in the center the
Peregrine P3. For a5 6= 0 or b5 6= 0 ,
we have 6 rings of 11, 11, 22, 11, 11,
11 peaks with in the center, one peak.
For a6 6= 0 or b6 6= 0 , we have 6 rings
with 13 peaks on each of them with-
out peak in the center. For a7 6= 0
or b7 6= 0 , we have 5 rings with 15
peaks on each of them and in the cen-
ter the Peregrine breather of order 2.
For a8 6= 0 or b8 6= 0, we have 4 rings
with 17 peaks on each of them and in
the center the Peregrine breather of or-
der 4. For a9 6= 0 or b9 6= 0, we have 3
rings with 19 peaks and in the center
the Peregrine breather of order 6. For
a10 6= 0 or b10 6= 0, we have 2 rings with
21 peaks and in the center the Pere-
grine breather of order 8. At least, for
a11 6= 0 or b11 6= 0, we have only one
ring with 23 peaks and in the center
the Peregrine breather of order 10.
With the previous study, we can for-
mulate the following conjectures about
the structure of solutions to the NLS
equation based on the parameters aj
and bj ; we chose the convention that
P0 represent 0 peak. These conjectures
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are given under the hypothesis that only
one parameter is not equal to 0 :
at order N , for a1 6= 0 or b1 6= 0,
the modulus of the solution to the

NLS equation presents the config-

uration of a triangle with N(N +
1)/2 peaks;

at order N , in the case 1 ≤ i ≤ [N2 ],
for aN−i 6= 0 or bN−i 6= 0, the mod-

ulus of the solution to the NLS

equation presents i concentric rings

with 2N − 2i + 1 peaks and in the

center the PN−2i breather;

at order N , in the case [N2 ] < i ≤
N − 2, for aN−i 6= 0 or bN−i 6= 0,
the modulus of the solution to the

NLS equation presents nk rings of

k(2N − 2i+ 1) peaks, for 1 ≤ k ≤ r,
rnr(2N − 2i+1) < N(N +1)/2) with

in the center the PN−2i breather,

verifying

r
∑

nk=1

nkk(2N − 2i+1) = 2iN − 2i2 + i.

It currently has many applications in
various fields like nonlinear optics [42]
or hydrodynamics [43]. We hope that
this work will be able to lead to phys-
ical applications and to bring a better
comprehension of the phenomenon of
the rogue waves.
It would be relevant to continue this
study to try to classify them in the gen-
eral case of order N (N > 11) and to
prove the preceding conjectures.
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Pöschl-Teller potentials and their
difference extensions, J. Phys A :
Math. Theor., V. 42, 1-16, (2009)

[16] P. Gaillard, Wronskian repre-
sentation of solutions of the NLS
equation and higher Peregrine
breathers, J. Math. Sciences :
Adv. Appl., V. 13, N. 2, 71-153,
(2012)

[17] P. Gaillard, Wronskian rep-
resentation of solutions of NLS
equation and seventh order rogue
waves, J. Mod. Phys., V. 4, N. 4,
246-266, (2013)

[18] P. Gaillard, V.B. Matveev,
Wronskian addition formula and
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