Texton Noise

Abstract : Designing realistic noise patterns from scratch is hard. To solve this problem, recent contributions have proposed involved spectral analysis algorithms that enable procedural noise models to faithfully reproduce some class of textures. The aim of this paper is to propose the simplest and most efficient noise model that allows for the reproduction of any Gaussian texture. Texton noise is a simple sparse convolution noise that sums randomly scattered copies of a small bilinear texture called texton. We introduce an automatic algorithm to compute the texton associated with an input texture image that concentrates the input frequency content into the desired texton support. One of the main features of texton noise is that its evaluation only consists to sum thirty texture fetches on average. Consequently texton noise generates Gaussian textures with an unprecedented evaluation speed for noise by example. A second main feature of texton noise is that it allows for high quality on-the-fly anisotropic filtering by simply invoking existing GPU hardware solutions for texture fetches. In addition, we demonstrate that texton noise can be applied on any surface using parameterization-free surface noise and that it allows for noise mixing.
Type de document :
Article dans une revue
Computer Graphics Forum, Wiley, 2017, 〈10.1111/cgf.13073〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

Contributeur : Bruno Galerne <>
Soumis le : vendredi 3 mars 2017 - 09:35:49
Dernière modification le : jeudi 7 février 2019 - 17:14:43
Document(s) archivé(s) le : mardi 6 juin 2017 - 12:17:36



B. Galerne, A. Leclaire, L. Moisan. Texton Noise. Computer Graphics Forum, Wiley, 2017, 〈10.1111/cgf.13073〉. 〈hal-01299336v2〉



Consultations de la notice


Téléchargements de fichiers