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Abstract: To each Boolean function F : {0, 1}n → {0, 1}n and each point x ∈ {0, 1}n,

we associate the signed directed graph GF (x) of order n that contains a positive (resp.

negative) arc from j to i if the discrete analogue of (∂fi/∂xj)(x) is positive (resp. negative).

We then focus on the following open problem: Is the absence of a negative circuit in GF (x)

for all x ∈ {0, 1}n a sufficient condition for F to have at least one fixed point? As main

result, we settle this problem under the additional condition that, for all x ∈ {0, 1}n, the

out-degree of each vertex of GF (x) is at most one.

Key words: Boolean network, Interaction graph, Discrete Jacobian matrix, Feedback

circuit, Negative circuit, Fixed point.
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1 Introduction

In the course of his analysis of discrete iterations, Robert introduced a discrete Jacobian

matrix for Boolean maps and the notion of Boolean eigenvalue [2, 3, 4, 5]. This material

allows Shih and Ho to state in 1999 a Boolean analogue of the Jacobian conjecture [7]: If a

map from {0, 1}n to itself is such that all the Boolean eigenvalues of the discrete Jacobian

matrix of each element of {0, 1}n are zero, then it has a unique fixed point. Thanks to the

work of Shih and Dong [6], this conjecture is now a theorem.

Our starting point is an equivalent statement of the Shih-Dong theorem, the Theorem 1

below, in which the condition “all the Boolean eigenvalues of the discrete Jacobian matrix

are zero” is expressed with the following few basic definitions and graph-theoretic notions.

Let n be a positive integer, and consider a Boolean map

F : {0, 1}n → {0, 1}n, x = (x1, . . . , xn) 7→ F (x) = (f1(x), . . . , fn(x)).

The interaction graph of F evaluated at point x ∈ {0, 1}n is the directed graph on {1, . . . , n}

that contains an arc from a vertex j to a vertex i if the quantity

fij(x) = fi(x1, . . . , xj−1, 1, xj+1, . . . , xn) − fi(x1, . . . , xj−1, 0, xj+1, . . . , xn)

is not zero, i.e., if the partial derivative of fi with respect to xj is not is not zero at point x.

A circuit of length p in GF (x) is a sequence of p distinct vertices i1, i2, . . . , ip such that

there is an arc from ik to ik+1, 1 ≤ k < p, and from ip to i1. An arc from a vertex to itself

is thus a circuit of length one.
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Theorem 1 (Shih and Dong, 2005)

If GF (x) has no circuit for all x ∈ {0, 1}n, then F has a unique fixed point.

Remy, Ruet and Thieffry [1] proved latter that F has at most one fixed point under a

condition weaker than “GF (x) has no circuit for all x ∈ {0, 1}n”. For that, they define the

sign of an arc from j to i in GF (x) to be equals to fij(x). And, as usual, they define the

sign of a circuit to be the product of the signs of its edges.

Theorem 2 (Remy, Ruet and Thieffry, 2008)

If GF (x) has no positive circuit for all x ∈ {0, 1}n, then F has at most one fixed point.

This theorem positively answer a Boolean version of a conjecture of Thomas coming from

theoretical biology (see [1] and the references therein).

Seeing Theorems 1 and 2, it is natural to think about a proof by dichotomy of Theo-

rem 1, and to study the following difficult question:

Question 1 Is the absence of a negative circuit in GF (x) for all x ∈ {0, 1}n a sufficient

condition for F to have at least one fixed point?

In this note, we partially answer this question by establishing the following theorem:

Theorem 3 If GF (x) has no negative circuit for all x ∈ {0, 1}n, and if the out-degree of

each vertex of GF (x) is at most one for all x ∈ {0, 1}n, then F has at least one fixed point.

This partial answer is, in our knowledge, the first result about negative circuits in local

interaction graphs associated with F . And it is not an obvious exercise. To see this, one

can refer to the technical arguments used by Shih and Ho [7, pages 75-88] to prove that if
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GF (x) has no circuit for all x ∈ {0, 1}n, and if the out-degree of each vertex of GF (x) is at

most one for all x ∈ {0, 1}n, then F has at least one fixed point.

Finally, we also prove, using Theorem 2, the following theorem:

Theorem 4 If GF (x) has no negative circuit for all x ∈ {0, 1}n, and if there exists a vertex

i ∈ {1, . . . , n} such that, for all x ∈ {0, 1}n, all the positive circuits of GF (x) contain i,

then F has at least one fixed point.

Note that Theorem 1 is an immediate consequence of Theorem 2 and Theorem 4.

The paper is organized as follows. After some preliminaries given in Section 2, Sections

3 and 4 are devoted to the proof of Theorems 3 and 4 respectively.

2 Preliminaries

As usual, we set 0 = 1 and 1 = 0. For all x ∈ {0, 1} and I ⊆ {1, . . . , n}, we denote by xI

the point y of {0, 1}n defined by: yi = xi if i ∈ I, and yi = xi otherwise (i = 1, . . . , n). In

order to simplify notations, we write x instead of x{1,...,n}, and xi instead of x{i}.

Let F be a map from {0, 1}n to itself. Using the previous notations, the partial deriva-

tive of fi with respect to xj can be defined by

fij(x) =
fi(x

j) − fi(x)

xj − xj

.

If GF (x) has an arc from j to i, we say that i (resp. j) is a successor (resp. predecessor)

of j (resp. i), and we abusively write j → i ∈ GF (x). The out-degree of a vertex is defined

to be the number of successors of this vertex.
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We are interested in maps F that have the following property P:

∀x ∈ {0, 1}n, the out-degree of each vertex of GF (x) is at most one. (P)

Note that if F has the property P, then

j → i ∈ GF (x) ⇐⇒ F (xi) = F (x)
j
.

The Hamming distance d(x, y) between two points x, y of {0, 1}n is the number of

indices i ∈ {1, . . . , n} such that xi 6= yi. So, for instance, d(x, y) = n if and only if y = x,

and d(x, y) = 1 if and only if there exists i ∈ {1, . . . , n} such that y = xi. Note also that

F has the property P if and only if

∀x, y ∈ {0, 1}n, d(x, y) = 1 ⇒ d(F (x), F (y)) ≤ 1.

We then deduce, by recurrence on d(x, y), that F has the property P if and only if

∀x, y ∈ {0, 1}n, d(F (x), F (y)) ≤ d(x, y).

We now associate with F two maps from {0, 1}n−1 to itself that will be used as inductive

tools in the proof of Theorems 3 and 4. If x ∈ {0, 1}n−1 and b ∈ {0, 1}, we denote

by (x, b) the point (x1, . . . , xn−1, b) of {0, 1}n. Then, for b ∈ {0, 1}, we define the map

F |b = (f
|b
1

, . . . , f
|b
n ) : {0, 1}n−1 → {0, 1}n−1 by

f
|b
i (x) = fi(x, b) (i = 1, . . . , n − 1).
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We have then the following obvious property: for all x ∈ {0, 1}n−1 and b ∈ {0, 1},

f
|b
ij (x) = fij(x, b) (i, j = 1, . . . , n − 1).

Consequently, for all x ∈ {0, 1}n−1 and b ∈ {0, 1},

GF |b(x) is a subgraph of GF (x, b),

i.e., if GF |b(x) has a positive (resp. negative) arc from j to i, then GF (x, b) has a positive

(resp. negative) arc from j to i. It is then clear that if F has the property P then F |b has

the property P.

3 Proof of Theorem 3

Lemma 1 If d(x, F (x)) = 1, then any circuit of GF (x) of length n is negative.

Proof – Suppose that d(x, F (x)) = 1 and that C = i1, . . . , in is a circuit of GF (x) of

length n. Without loss of generality, we can suppose that F (x) = xi1 . Let h(1) = 1 and

h(0) = −1. We have

fi1in(x) =
fi1(x

in) − fi1(x)

xin − xin

=
fi1(x

in) − xi1

xin − xin

,

and since fi1in(x) 6= 0 we obtain

fi1in(x) =
xi1 − xi1

xin − xin

=
h(xi1)

h(xin)
.
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Furthermore, for k = 1, . . . , n − 1, we have

fik+1ik(x) =
fik+1

(xik) − fik+1
(x)

xik − xik

=
fik+1

(xik) − xik+1

xik − xik

,

and since fik+1ik(x) 6= 0 we obtain

fik+1ik(x) =
xik+1

− xik+1

xik − xik

=
h(xik+1

)

h(xik)
.

Denoting by s the sign of C, we obtain

s = fi2i1(x) · fi3i2(x) · fi4i3(x) · · · finin−1
(x) · fi1in(x)

=
h(xi2)

h(xi1)
·

h(xi3)

h(xi2)
·

h(xi4)

h(xi3)
· · ·

h(xin)

h(xin−1
)
·

h(xi1)

h(xin)
=

h(xi1)

h(xi1)
= − 1.

�

The rest of the proof is based on the following notion of opposition: given two points

x, y ∈ {0, 1}n and an index i ∈ {1, . . . , n}, we say that x and y are in opposition (with

respect to i in F ) if

F (x) = xi, F (y) = yi and xi 6= yi.

Lemma 2 Let F be a map from {0, 1}n to itself that has the property P. If F has two

points in opposition, then there exists two distinct points x and y in {0, 1}n such that GF (x)

and GF (y) have a common negative circuit.

Proof – We proceed by induction on n. The lemma being obvious for n = 1, we suppose

that n > 1 and that the lemma holds for maps from {0, 1}n−1 to itself. We also suppose
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that F has at least two points in opposition.

First, suppose that α and β are two points in opposition with respect to i in F such

that α 6= β. Then there exists j 6= i such that αj = βj , and without loss of generality we

can suppose that αn = βn = b. Set α̃ = (α1, . . . , αn−1) and β̃ = (β1, . . . , βn−1) so that

α = (α̃, b) and β = (β̃, b). Then, α̃i = αi 6= βi = β̃i, and since F (α) = αi, we have

F |b(α̃) = (f1(α), . . . , fi(α), . . . , fn−1(α)) = (α1, . . . , αi, . . . , αn−1) = α̃
i
,

and we show similarly that F |b(β̃) = β̃
i

. Consequently, α̃ and β̃ are in opposition with

respect to i in F |b. Since F has the property P, F |b has the property P, and so, by

induction hypothesis, there exists two distinct points x, y ∈ {0, 1}n−1 such that GF |b(x)

and GF |b(y) have a common negative circuit. Since GF |b(x) and GF |b(y) are subgraphs of

GF (x, b) and GF (y, b) respectively, we deduce that GF (x, b) and GF (y, b) have a common

negative circuit and the lemma holds.

So in the following, we assume the following hypothesis H:

If F has two points α and β in opposition, then α = β. (H)

We need the following four claims to complet the proof.

Claim 1 F has no fixed point.

Proof – Let α and β be two points in opposition with respect to i in F . Suppose, by

contradiction, that x is a fixed point of F . If xi = αi, then d(F (x), F (α)) = d(x, ai) >

d(x, α) and this contradicts the fact that F has the property P. Otherwise, xi = βi, thus
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d(F (x), F (β)) = d(x, β
i
) > d(x, β) and we arrive to the same contradiction. �

Notation: In the following, for all x ∈ {0, 1}n, we set

x1 = x and xk+1 = F (xk) (k = 1, 2, 3, . . . ).

Claim 2 If α and β are in opposition in F , then there exists a permutation {i1, . . . , in} of

{1, . . . , n} such that αk and βk are in opposition with respect to ik in F (k = 1, . . . , n).

Proof – Suppose that α = α1 and β = β1 are in opposition with respect to i in F . For

p = 1, . . . , n, we denote by Sp the set of sequences (i1, i2, . . . , ip) of p distinct indices of

{1, . . . , n} such that αk+1 = αk
ik

for k = 1, . . . , p. S1 is not empty since, by definition,

(i) ∈ S1. So in order to prove that Sn is not empty, it is sufficient to prove that

Sp 6= ∅ ⇒ Sp+1 6= ∅ (p = 1, . . . , n − 1).

Suppose that (i1, . . . , ip) ∈ Sp (1 ≤ p < n). Then αp+1 = apip , so d(αp+1, αp) = 1 and

since F has the property P, we deduce that

d(F (αp+1), αp+1) = d(F (αp+1), F (αp)) ≤ d(αp+1, αp) = 1.

Since, by Claim 1, we have F (αp+1) 6= αp+1, we deduce that d(F (αp+1), αp+1) = 1. In

other words, there exists j ∈ {1, . . . , n} such that

F (αp+1) = αp+1
j
.
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Suppose that there exists k ∈ {1, . . . , p} such that j = ik. Then,

F (αk) = αk
j

and since

αp+1 = αp{ip} = αp−1
{ip−1,ip}

= · · · = αk
{ik ,...,ip−1,ip}

,

we have

αk
j = αk

ik
6= αp+1

ik
= αp+1

j .

Thus αk and αp+1 are in opposition with respect to i in F . But since {ik, . . . , ip−1, ip} is

strictly included in {1, . . . , n}, we have αp+1 6= αk and this contradicts the hypothesis H.

Thus j 6∈ {i1, . . . , ip} and we deduce that (i1, . . . , ip, j) belongs to Sp+1. Thus Sp+1 is not

empty and it follows that Sn is not empty. Thus, there exists a permutation {i1, . . . , in} of

{1, . . . , n} such that αp+1 = apip for p = 1, . . . , n, and we show similarly that there exists

a permutation {j1, . . . , jn} of {1, . . . , n} such that βp+1 = βpjp
for p = 1, . . . , n. Observe

that, following the hypothesis H, we have α = β and thus

αn+1 = α{i1,...,in} = α = β and βn+1 = β
{j1,...,jn}

= β = α. (1)

We are now in possition to prove, by recurrence on k decreasing from n to 1, that αk

and βk are in opposition with respect to ik in F . Since F has the property P, and from

(1), we have

d(αn, βn) ≥ d(F (αn), F (βn)) = d(αn+1, βn+1) = d(β, α) = d(β, β) = n.
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thus

d(αn, βn) = n = d(αn+1, βn+1) = d(αnin , βnjn
)

We deduce that in = jn and αn
in

6= βn
in

. It is then clear that αn and βn are in opposition

with respect to in in F . Now, suppose that αk and βk are in opposition with respect to

ik in F (2 ≤ k ≤ n). Then, following the hypothesis H, αk = βk, and since F has the

property P, we deduce that

d(αk−1, βk−1) ≥ d(F (αk−1), F (βk−1)) = d(αk, βk) = d(βk, βk) = n

Thus

d(αk−1, βk−1) = n = d(αk, βk) = d(αk−1
ik−1

, βk−1
jk−1

).

We deduce that ik−1 = jk−1 and αk−1

ik−1
6= αk−1

ik−1
and thus that αk−1 and βk−1 are in

opposition with respect to ik−1 in F . �

Claim 3 If α and β are in opposition with respect to i in F , then i has at most one

predecessor in GF (α).

Proof – Let {i1, . . . , in} be a permutation of {1, . . . , n} with the property of Claim 2.

Then αi1 = F (α) = αi thus i = i1. Suppose, by contradiction, that i1 has at least two

predecessors in GF (α). Then i1 has a predecessor ik 6= in in GF (α). Using the property

P, we deduce that

F (αik) = F (α)
i1

= αi1
i1

= α = αik
ik

and F (αk) = αk
ik

.
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If k = 1, then αk = α and so

(αk)ik = αik 6= (αik)ik and αk
in

= (αik)in . (2)

Otherwise, αk = α{i1,...,ik−1} and so (2) holds again. Consequently, in both cases, αk

and αik are in opposition with respect to ik in F and αk 6= αik . This contradicts the

hypothesis H. �

Claim 4 If α et β are in opposition in F , then GF (αn) has a circuit of length n.

Proof – Let {i1, . . . , in} be a permutation of {1, . . . , n} with the property of Claim 2. We

will show that i1, . . . , in is a circuit of GF (αn). We have

F
(

αk
ik−1

)

= F

(

αk−1
ik−1

ik−1
)

= F (αk−1) = αk = ak
ik

ik

= F (αk)
ik

(k = 2, . . . , n)

and thus

ik−1 → ik ∈ GF (αk) (k = 2, . . . , n). (3)

In addition,

F
(

αk
ik)

= F (αk+1) = ak+1
ik+1

= F (αk)
ik+1

(k = 1, . . . , n − 1)

and thus

ik → ik+1 ∈ GF (αk) (k = 1, . . . , n − 1).
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Let k be any index of {1, . . . , n − 1}, and suppose, by contradiction, that

ik → ik+1 6∈ GF (αn).

Since ik → ik+1 ∈ GF (αk), there exists p ∈ {k + 1, . . . , n} such that

ik → ik+1 ∈ GF (αp−1) and ik → ik+1 6∈ GF (αp).

Following (3), we have ip 6= ik+1. Furthermore, from ik → ik+1 ∈ GF (αp−1) we deduce

that

fik+1
(αp−1) 6= fik+1

(

αp−1
ik)

, (4)

and from both ik → ik+1 6∈ GF (αp) and αp = αp−1
ip−1

we deduce that

fik+1

(

αp−1
ip−1

)

= fik+1

(

αp−1
ip−1

ik
)

= fik+1

(

αp−1
ik

ip−1
)

. (5)

If

fik+1
(αp−1) 6= fik+1

(

αp−1
ip−1

)

then ik+1 and ip are distinct successors of ip−1 in GF (αp−1), and this contradicts the fact

that F has the property P. Thus

fik+1
(αp−1) = fik+1

(

αp−1
ip−1

)
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and from (4) and (5) we deduce that

fik+1
(αp−1

ik
) 6= fik+1

(

αp−1
ik

ip−1
)

.

Thus ip−1 → ik+1 ∈ GF

(

αp−1
ik)

and since F has the property P, we have

F
(

αpik
)

= F

(

αp−1
ip−1

ik
)

= F

(

αp−1
ik

ip−1
)

= F
(

αp−1
ik)

ik+1

Since ik → ik+1 ∈ GF (αp−1), we have F
(

αp−1
ik)

= F (αp−1)
ik+1

and using the property P

we obtain

F
(

αpik
)

= F (αp−1)
ik+1

ik+1

= F (αp−1) = αp = αpip
ip

= F (αp)
ip

So ik and ip−1 are predecessors of ip in GF (αp), and ik 6= ip−1 since ip 6= ik+1. We have

now a contradiction: following Claim 2, αp and βp are in opposition with respect to ip in

F , and so, following Claim 3, ip has at most one predecessor in GF (αp). We have thus

prove that

ik → ik+1 ∈ GF (αn) (k = 1, . . . , n − 1)

To prove the claim, it is thus sufficient to prove that in → i1 ∈ GF (αn), and this is

obvious. Indeed, following the hypothesis H, we have α = β, thus

F (αn) = αn+1 = α{i1,...,in} = α = β
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and so

F
(

αnin
)

= F (αn+1) = F (β) = β
i1

= F (αn)
i1

.

�

We are now in position to prove the lemma. Let α and β be two points in opposition

in F . Following Claim 2 and Claim 4, αn and βn are two points in opposition, and thus

distinct, such that GF (αn) and GF (βn) have a common circuit of length n, and according

to Lemma 1, this circuit is negative, both in GF (αn) and GF (βn). �

Lemma 3 Let F be a map from {0, 1}n to itself that has the property P. If there is no

distinct points x, y ∈ {0, 1}n such that GF (x) and GF (y) have a common negative circuit,

then F has at least one fixed point.

Proof – We proceed by induction on n. The lemma being obvious for n = 1, we suppose

that n > 1 and that the lemma holds for maps from {0, 1}n−1 to itself. Let F be as in the

statement, and let b ∈ {0, 1}. Since GF |b(x) is a subgraph of GF (x, b) for all x ∈ {0, 1}n−1,

F |b has the property P and there is no distinct points x, y ∈ {0, 1}n such that GF |b(x) and

GF |b(y) have a common negative circuit. So, by induction hypothesis, F |b has at least one

fixed point that we denote by ξb. Now, we prove that (ξ0, 0) or (ξ1, 1) is a fixed point of
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F . If not, then for b ∈ {0, 1},

F (ξb, b) = (f1(ξ
b, b), . . . , fn−1(ξ

b, b), fn(ξb, b))

= (f
|b
1

(ξb), . . . , f
|b
n−1

(ξb), fn(ξb, b))

= (ξb
1, . . . , ξ

b
n−1, fn(ξb, b))

= (ξb, fn(ξb, b))

= (ξb, b)

= (ξb, b)
n
.

We deduce that (ξ0, 0) and (ξ1, 1) are in opposition with respect to n in F , and so, by

Lemma 2, there exists two distinct points x, y ∈ {0, 1}n such that GF (x) and GF (y) have

a common negative circuit, a contradiction. �

Theorem 1 is an obvious consequence of Lemma 3.

4 Proof of Theorem 4

We proceed by induction on n. The case n = 1 being obvious, we suppose that n > 1 and

that the theorem holds for maps from {0, 1}n−1 to itself. Let F be a map from {0, 1}n

to itself, and without loss of generality, suppose that, for all x ∈ {0, 1}n, all the positive

circuits of GF (x) contain the vertex n.

For b ∈ {0, 1} and x ∈ {0, 1}n−1, it is clear that GF |b(x) has no circuit since GF |b(x) is

a subgraph of GF (x, b) that does not contains the vertex n. So F |b trivilally satisfies the

conditions of the theorem. So, by induction hypothesis, F |b has at least one fixed point

that we denote by ξb.
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We will show that α = (ξ0, 0) or β = (ξb, 1) is a fixed point of F . Suppose, by

contradiction, that neither α nor β is a fixed point of F . Then, as in Lemma 3, we prove

that F (α) = αn and that F (β) = β
n
.

Consider the map F̄ from {0, 1}n to {0, 1}n defined by

F̄ (x) = F (x)
n
.

It is clear that α and β are distinct fixed points of F̄ . So, by Theorem 2, there exists

x ∈ {0, 1}n such that GF̄ (x) has a positive circuit C. If n does not belong to C, then since

f̄ij = fij for i = 1, . . . , n − 1 and j = 1, . . . , n, (6)

we deduce that C is a positive circuit of GF (x) that does not contains n, a contradiction.

Otherwise, n belongs to C, and we then deduce from (6) and the fact that

f̄nj = −fnj for j = 1, . . . , n

that C is a negative circuit of GF (x), a contradiction.
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