Local negative circuits and fixed points in Boolean networks

Abstract : To each Boolean function $F$ from ${0,1}^n$ to itself and each point x in ${0,1}^n$, we associate the signed directed graph $G_F(x)$ of order $n$ that contains a positive (resp. negative) arc from $j$ to $i$ if the partial derivative of $f_i$ with respect of $x_j$ is positive (resp. negative) at point $x$. We then focus on the following open problem: Is the absence of a negative circuit in $G_F(x)$ for all $x$ in ${0,1}^n$ a sufficient condition for $F$ to have at least one fixed point? As main result, we settle this problem under the additional condition that, for all x in ${0,1}^n$, the out-degree of each vertex of $G_F(x)$ is at most one.
Type de document :
Article dans une revue
Discrete Applied Mathematics, Elsevier, 2011, 159 (11), pp.1085-1093


https://hal.archives-ouvertes.fr/hal-01298851
Contributeur : Adrien Richard <>
Soumis le : mercredi 6 avril 2016 - 17:07:06
Dernière modification le : vendredi 8 avril 2016 - 01:05:48
Document(s) archivé(s) le : jeudi 7 juillet 2016 - 16:44:56

Fichier

0910.0750.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01298851, version 1
  • ARXIV : 0910.0750

Collections

Citation

Adrien Richard. Local negative circuits and fixed points in Boolean networks. Discrete Applied Mathematics, Elsevier, 2011, 159 (11), pp.1085-1093. <hal-01298851>

Partager

Métriques

Consultations de
la notice

26

Téléchargements du document

14