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Guiding-Center simulations on curvilinear meshes.

J.-P. Braeunig 1 2 3 , Nicolas Crouseilles1 2,
Michel Mehrenberger2 1, Eric Sonnendrücker2 1.

Abstract
The purpose of this work is to design simulation tools for magnetised plasmas
in the ITER project framework. The model addressed to simulate turbulent
transport in a Tokamak is a 5D gyrokinetic model, taking advantage of the
particular motion of particles due to the presence of a strong magnetic field.
Accurate schemes and parallel algorithms are designed to bear these heavy
simulations. One step further for the computational accuracy is to define
a mesh aligned with magnetic lines. In this way, we first study algorithms
and schemes in curvilinear coordinates for a reduced Vlasov-Poisson model:
the 2D Guiding-Center model. A first method is described and numerical
results are presented to show its good properties.

1 Introduction

In a Tokamak the plasma is kept out of the vessel walls by a magnetic field
which lines have a specific helicoidal geometry. Turbulence develops in the
plasma and leads to thermal transport which decreases the confinement ef-
ficiency. The characteristic mean free path is large, even compared with
the vessel size, therefore a kinetic description of particles is required, see
Dimits [4]. Therefore, one should use a 6D Vlasov-Poisson like model for
both ions and electrons to properly describe the plasma evolution. However,
the plasma flow in the presence of a strong magnetic field has characteris-
tics that allow some physical assumptions to reduce the model, see Brizard
and Hahm [1]. As a consequence, the 6D Vlasov-Poisson model is approxi-
mated by a 5D gyrokinetic model by averaging equations in such a way the
6D toroidal coordinates system (r, θ, φ, vr, vθ, vφ) becomes a 5D coordinates
system (r, θ, φ, v‖, µ), with v‖ the parallel to the field lines component of the
velocity and µ = m v2

⊥/2B the adiabatic invariant which depends on the
norm of the perpendicular to the field lines components of the velocity v2

⊥,
on the magnetic field magnitude B and on the particles mass m. Moreover,
the electrons are assumed to be at equilibrium, i.e. the effect of the electrons
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cyclotronic motion is neglected. Their distribution is then supposed to be
constant in time. The 5D gyrokinetic model then reduces to a Vlasov like
equation for ions guiding-center motion:

∂f̄µ
∂t

+
dX

dt
· ∇X f̄µ +

dv‖

dt
∂v‖ f̄µ = 0, (1)

where f̄µ(X, v‖) is the ion distribution function with X = (r, θ, φ), velocity
dX/dt and acceleration dv‖/dt define the guiding-center trajectories.
If ∇(X,v‖) · (dX/dt, dv‖/dt)

t = 0 then the model is termed as conservative
and can be written in an equivalent conservative form:

∂f̄µ
∂t

+∇X ·
(
dX

dt
f̄µ

)
+ ∂v‖

(
dv‖

dt
f̄µ

)
= 0. (2)

This equation for ions is coupled with a quasi-neutrality equation for the
electric potential Φ(R) on particles position, with R = X − ρL (with ρL the
Larmor radius):

− 1
Bωi
∇⊥ · (ne∇⊥Φ) +

e

κTe
(Φ− < Φ >θ,φ) =

∫
J0(f̄µ)dµdv‖ − ne, (3)

where J0 is the gyroaverage operator, ne is an equilibrium electron density,
Te the electron temperature, e the electron charge, κ the Boltzmann constant
for electrons and ωi the cyclotron frequency for ions. The operator ∇⊥ de-
notes the gradient in the directions perpendicular to the magnetic field lines.

These equations are of a simple form, but they have to be solved very
efficiently because of the 5D space and the large characteristic time scales
considered. Particles velocity in the parallel to the magnetic field lines
direction is much higher than in the perpendicular directions. Particles
motion is then strongly anisotropic. In the GYSELA code, the mesh is
currently structured and based on toroidal coordinates. This is not well
adapted to the flow because of the magnetic field lines curvature. Therefore,
we want to use curvilinear coordinates in such a way mesh lines are aligned
with the magnetic field lines, to better capture the anisotropy of the system
and avoid numerical diffusion in the perpendicular directions, see Brizard
and Hahm [1] for the foundations of this work. This adapted discretization
of the gyrokinetic model should permit to strongly reduce the number of
cells in the parallel to the magnetic field lines direction.
On the way of this curvilinear discretization of the gyrokinetic model, we
first worked on the the so-called Guiding-Center model, which is a reduced
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2D Vlasov equation coupled with a Poisson equation:{
∂f

∂t
+ E⊥ · ∇Xf = 0,

−∆Φ = f.
(4)

where f(x, y) is the particles distribution function with X = (x, y), dX/dt =
E⊥ = (Ey,−Ex)t define the trajectories with E = (Ex, Ey)t = −∇XΦ and
Φ(x, y) the electric potential. The model is conservative since ∇X ·E⊥ = 0.
This simple model contains some features of the gyrokinetic model and have
turbulent unstable modes which growth rate can be computed analytically.

To enforce the strict mass conservation in the system, one wants to
discretize the Guiding-Center model in its conservative form. It also allows
properly a directional splitting, which is very convenient to design a parallel
MPI algorithm and to deal with curvilinear coordinates without having to
handle the aligned mesh geometry. This is possible because the divergence
of the advection field is zero:

∇X · (E⊥) = ∂xEy − ∂yEx = −∂x∂yΦ + ∂x∂yΦ = 0.

Therefore, the system (4) is strictly equivalent to the following:

∂f

∂t
+∇X · (E⊥f) = 0,

−∆Φ = f.
(5)

This conservative system will be discretized using a conservative semi-
Lagrangian scheme, the Parabolic Spline Method (PSM, see Zerroukat et al
[11] [12] and Crouseilles, Mehrenberger, Sonnendrücker [2]) scheme. It is a
fourth order scheme which is equivalent for linear advection to the Backward
Semi-Lagrangian Scheme (BSL, see Cheng and Knorr [3] and Sonnendrücker
et al [10]) with a cubic B-splines interpolation operator, but in a conservative
form. The Vlasov equation will be discretized using a directional splitting
solving D (dimension of space) 1D conservative equations with the PSM
scheme. This allows to handle easily on structured grids any curvilinear
coordinates system. The Poisson equation will be solved on a cartesian grid
and the electric potential is remapped on the curvilinear mesh. This choice is
made to decouple the development of curvilinear coordinates for the Vlasov
equation (1) and for the quasi-neutrality equation (3), which the latest is
harder to handle for this change of coordinates.
In this paper, the PSM scheme will be detailed. The next section is dedicated
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to the writing of usual differential operators and in particular the Vlasov
equation in curvilinear coordinates. At last some numerical results will be
shown.

2 The conservative Parabolic Spline Method (PSM)
for Vlasov equations

The PSM scheme is very similar to the BSL one (see [3][10]), because it is also
based on characteristic curves of the flow and on a cubic spline reconstruction
of the distribution function. These schemes are exactly the same for linear
advection. However, the PSM scheme is based on the conservative form
of Vlasov equations and provides a perfect mass conservation when dealing
with non-linear advection, which the BSL scheme do not.
Let us consider a Vlasov equation in its conservative form:

∂f

∂t
+∇x · (a f) = 0, (6)

with f(x, t) a scalar function, position x ∈ RD and a(x, t) ∈ RD the advec-
tion field. The mass m conservation in a Lagrangian volume reads:

m =
∫
V oln+1

f(x, tn+1)dΩ =
∫
V oln

f(x, tn)dΩ, (7)

with the characteristic curves X defined as
dX(x, t)

dt
= a(x, t) and xn =

X(xn, tn), and the volume V oln = {X(xn+1, tn) such that X(xn+1, tn+1) ∈
V oln+1} defines the Lagrangian motion of V oln by the field a(x, t).

This conservative formalism properly allows a directional splitting with-
out loosing the mass conservation, because each 1D step will be written in
a conservative form. From a numerical point of view, the 1D advection for
each direction will be approximated by the following 1D equation:∫ xn+1

i+1/2

xn+1
i−1/2

f(x, tn+1)dx =
∫ xn

i+1/2

xn
i−1/2

f(x, tn)dx, (8)

with xn+1
i+1/2 = X(xn+1

i+1/2, t
n+1) settled as the 1D mesh nodes and xni+1/2 =

X(xn+1
i+1/2, t

n) the so called characteristic ”foot” of xn+1
i+1/2. Let us define the

average of f in cell i at time tn+1:

f
n+1
i =

1
∆x

∫ xn+1
i+1/2

xn+1
i−1/2

f(x, tn+1)dx, (9)
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and the primitive function

Fn(z) =
∫ z

x1/2

f(x, tn)dx, (10)

with x1/2 an arbitrary reference point of the domain and for instance the
first node of the grid {xi−1/2}i=1,N+1.

Therefore, we have to solve a nonlinear system to obtain X(xn+1
i+1/2, t

n) =
xni+1/2 (which is similar with the BSL one) to obtain a solution of equation
(8) that simply writes:

X(xn+1
i+1/2, t

n+1)−X(xn+1
i+1/2, t

n)

∆t
= a

(
X
n+1/2
i+1/2 , t

n+1/2
)
, (11)

with
X
n+1/2
i+1/2 =

(
X(xn+1

i+1/2, t
n+1) +X(xn+1

i+1/2, t
n)
)
/2,

f
n+1
i ∆x = Fn(X(xn+1

i+1/2, t
n))− Fn(X(xn+1

i−1/2, t
n)),

(12)

with the time step ∆t = tn+1− tn and the space step ∆x = xn+1
i+1/2−x

n+1
i−1/2 .

The scheme is constituted with two steps:

• For a mesh node i+1/2 which location is settled as xn+1
i+1/2 = X(xn+1

i+1/2, t
n+1),

we have to follow backward the characteristic curve to find the ”foot”
xni+1/2 = X(xn+1

i+1/2, t
n).

• Computation of the primitive function at mesh nodes xn+1
i+1/2, what is

a simple addition because for any i ∈ [1, N ]:

Fn(xn+1
i+1/2)− Fn(x1/2) =

i∑
k=1

f
n
k∆x,

then interpolation (cubic spline) of the primitive function Fn(z) on
the domain with nodal values Fn(xn+1

i+1/2) to obtain its value at xni+1/2,
which is not a mesh node in general. Thus we have
f
n+1
i ∆x = Fn(xni+1/2)− Fn(xni−1/2).

This scheme is fourth order in space. It is second order in time with a
leap-frog or predictor-corrector time integration scheme to compute the ad-
vection field a(x, tn+/2) at time tn+1/2. This scheme is conservative because
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by integrating on the whole domain:∫ xn+1
N+1/2

xn+1
1/2

f(x, tn+1)dx =
N∑
k=1

f
n+1
k ∆x = Fn(xnN+1/2)− Fn(xn1/2)

=
∫ xn

N+1/2

xn
1/2

f(x, tn)dx.
(13)

3 Vlasov Equation in curvilinear coordinates

3.1 Curvilinear coordinates

Let us consider a cartesian coordinates system x = (x1, x2, x3) ∈ R3. A
curvilinear coordinates system is defined with three functions ξ1(x), ξ2(x), ξ3(x)
which the Jacobian is

J = det


∂ξ1
∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ2
∂x1

∂ξ2
∂x2

∂ξ2
∂x3

∂ξ3
∂x1

∂ξ3
∂x2

∂ξ3
∂x3

 = ∇ξ1 · (∇ξ2 ×∇ξ3).

One can build two bases of R3 by using ξ1(x), ξ2(x), ξ3(x):

(∇ξ1,∇ξ2,∇ξ3)

and
(∇ξ2 ×∇ξ3,∇ξ3 ×∇ξ1,∇ξ1 ×∇ξ2).

A given vector A ∈ R3 can be expressed at any point in each base as follow:

A = A1∇ξ1 +A2∇ξ2 +A3∇ξ3, (14)

A = A1∇ξ2 ×∇ξ3 +A2∇ξ3 ×∇ξ1 +A3∇ξ1 ×∇ξ2. (15)

Coordinates Ai (subscript index) are termed as covariant coordinates of A
and coordinates Ai (superscript index) are termed as contravariant coordi-
nates of A. These two coordinates systems are linked by the metric tensor
which is a 3× 3 symmetric matrix written G and defined by

G−1 =

∇ξ1 · ∇ξ1 ∇ξ1 · ∇ξ2 ∇ξ1 · ∇ξ3
∇ξ2 · ∇ξ1 ∇ξ2 · ∇ξ2 ∇ξ2 · ∇ξ3
∇ξ3 · ∇ξ1 ∇ξ3 · ∇ξ2 ∇ξ3 · ∇ξ3


A common convention is to write gij the elements of matrix G and gij those
of the inverse matrix G−1. Therefore we have

Ai =
∑
j

gijA
j and Ai =

∑
j

gijAi.
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Remark 1. The metric tensor determinant is linked to the transformation
Jacobian J by det G−1 = J2. Let us write g = det G, thus we have J =
1/
√
g.

Contravariant coordinates are obtained by the scalar product of (15)
with ∇ξi:

JAi = A · ∇ξi, thus Ai =
√
gA · ∇ξi. (16)

Usual operators are then written in curvilinear coordinates as follow:

(∇Φ)i =
3∑

k=1

gik
∂

∂ξk
Φ, (17)

∇ ·A =
1
√
g

3∑
i=1

∂

∂ξi
(Ai), (18)

∆Φ =
1
√
g

3∑
i=1

3∑
k=1

∂

∂ξi
(
√
ggik

∂

∂ξk
Φ). (19)

3.2 Vlasov equation

Let us consider again the Vlasov equation in its conservative form in a
cartesian coordinates system x = (x, y, z):

∂f

∂t
+∇x · (a f) = 0, (20)

with f(x, t) a scalar function, position x ∈ R3 and a(x, t) ∈ R3 the advection
field. Considering a curvilinear coordinates system ξ1(x), ξ2(x), ξ3(x) with
its associated Jacobian J = 1/

√
g, one can write the Vlasov equation in

these curvilinear coordinates:

∂f

∂t
+

1
√
g

3∑
i=1

∂

∂ξi
(ai f) = 0, (21)

with ai =
√
g a · ∇ξi.

Notice that the change of coordinates system yields to a very equivalent form
of the divergence. Indeed, since the jacobian

√
g is not time dependent, the

divergence writes:
∂f̃

∂t
+

3∑
i=1

∂

∂ξi
(ãi f̃) = 0, (22)
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with f̃ =
√
g f and ãi = a · ∇ξi.

For instance, in the cylindrical coordinates system:

x = r cos θ,
y = r sin θ,
z = ζ,

the Vlasov equation writes:

∂f

∂t
+

1
r

(
∂r(rarf) + ∂θ(raθf) + ∂ζ(raζf)

)
= 0, (23)

with the Jacobian
√
g = r and contravariant coordinates ar = a · ∇r =

ax cos θ + ay sin θ, aθ = (−ax sin θ + ay cos θ)/r and aζ = az.
An equivalent form can be written as follow:

∂f̃

∂t
+ ∂r(arf̃) + ∂θ(aθf̃) + ∂ζ(aζ f̃) = 0, (24)

with f̃ = r f .

3.3 Periodic boundary conditions

One difficulty may arise, when considering a mesh based on a curvilinear
coordinates system, with periodic boundary conditions in a cartesian direc-
tion. Each mesh line might not connect with itself but with a neighbouring
mesh line, see figure 1. This is a specific problem when using curvilinear co-
ordinates: when defining the adapted mesh, we need to make sure that the
mesh is still conform. For instance, each node at the domain lower boundary
should have a corresponding node at the upper boundary, even if it does not
reconnect on the same mesh line.
This will be a restriction in the choice of the adapted mesh in a Tokamak
geometry. The helicoidal geometry of magnetic field lines in the poloidal
section of the torus have a rotation rate q(r), the safety coefficient, which
is not constant but depends on the radial direction. It is not a rational
number in general, thus field lines might not reconnect by periodicity in
the toroidal direction, so would neither a mesh adapted to field lines. Two
solutions will be investigated. First one is to choose an adapted mesh with
a rational safety coefficient qi close to each real magnetic field lines safety
factor q(ri), in such a way the angle between mesh lines and magnetic field
lines will be as small as possible (figure 4 shows that the benefits of adapting
the mesh remains for small angles). Second one is suggested by X. Garbet
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(CEA Cadarache [6]) is to use an adapted mesh with a non-constant space
step in the radial direction with mesh nodes ri positioned in such a way q(ri)
is a rational number. Thus a periodic condition would become possible to
settle.

Figure 1: The domain is periodic in cartesian directions x and y. Periodicity
in y direction imposes a reconnection of different mesh lines to obtain the
proper periodic boundary condition.

3.4 Remap between curvilinear and cartesian meshes

In the context of Vlasov-Poisson like models as the Guiding-Center model or
the gyrokinetic model, it can be convenient to compute the solution of the
Vlasov equation using a curvilinear coordinates system and the solution of
the Poisson equation on a cartesian coordinates system. Any adapted mesh
will particularly be adapted to the Poisson equation, because it is roughly
speaking an isotropic diffusion operator. Therefore, a cartesian mesh is the
best and the simplest to design a Poisson solver. Moreover, it would decouple
the computer implementation of these two solvers.
For instance, let us consider the step of the solver algorithm when the Vlasov
solver needs as an input the electric potential Φ on the curvilinear mesh,
whereas this quantity is computed by the Poisson solver on the cartesian
mesh. We then need to remap Φ from the cartesian mesh to the curvilinear
mesh. Let us consider for instance a mesh with cell centred values, such that
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the electric potential Φ values on the cartesian mesh are denoted Φx,y(i, j) at
the point of coordinates (x(i, j), y(i, j)) with (i, j) ∈ [1, Nx]× [1, Ny] and has
its discrete values on the curvilinear mesh denoted Φξ,η(p, q) at the point of
coordinates (ξ(p, q), η(p, q)) with (p, q) ∈ [1, Nx]× [1, Ny]. We assume there
exists an invertible function f : R2 → R2 defining the curvilinear mesh from
the cartesian mesh of the following form:

ξ = fξ(x, y) and η = fη(x, y).

By definition of the curvilinear mesh, for any logical position (i, j), the vector
a(i, j) from the corresponding physical position on the cartesian mesh of
Φx,y(i, j) to the one on the curvilinear mesh Φξ,η(i, j) is(

ax(i, j)
ay(i, j)

)
=
(
ξ(i, j)− x(i, j)
η(i, j)− y(i, j)

)
(25)

Therefore, we can use the same scheme used for the Vlasov equation,
that performs a virtual advection equation of the form:

∂Φ
∂t

+ U · ∇x,yΦ = 0, (26)

with the velocity U = a/∆t defined in such a way that, for any time step
∆t = tn+1 − tn, we obtain by following the caracteristic curves:

Φξ,η(i, j) = Φn+1(ξ, η) = Φn(ξ − ax, η − ay) = Φn(x, y) = Φx,y(i, j),

with Φn(x, y) the electric potential at a virtual virtual time tn and dropping
arguments (i, j).

The advection scheme is used with a ”virtual” advection velocity in such
a way quantities on the Poisson solver mesh are remapped on the Vlasov
solver mesh. The same advection procedure is used to remap quantities on
the Vlasov solver mesh to the Poisson solver mesh, see figure 2. In the con-
text of the PSM scheme in which the distribution function is reconstructed
by using cubic splines, this way of remaping using the advection scheme
itself is obviously of the same order of accuracy as the scheme.

4 Numerical results

4.1 Oblic advection

We consider an oblic advection of a 2D regular sinusoidal function advected
by a constant 2D advection field vector (ax = 1, ay = 4). The initial function
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Figure 2: Remap of Poisson variables from the cartesian mesh to the curvi-
linear mesh and vice versa.

(see figure 3) has an obvious symmetry, considering apparent ”dots” which
axis is aligned with the advection direction. The domain dimensions are
[0, 1]2 with a mesh of 80×80 cells. The domain is periodic in both cartesian
directions (x, y) and end time is calculated in such a way the final function
is superimposed to the initial one after travelling ten times through the
domain. The oblic curvilinear mesh is parametrized by α, defined by the
inverse of the slope of mesh lines:

ξ1 = x− αy and ξ2 = y.

The issue for this benchmark is to evaluate the numerical error, function
of the angle between the advection direction and the mesh lines. Figure 4
shows that when the angle between advection velocity and mesh lines is set
to zero, the error is minimum. When the angle is not zero, a transversal
numerical error appears because of advection velocity transversal to the
mesh lines and increases as well the angle increases. Notice that error curves
are not symmetric with respect to the angle value zero.

4.2 Unstable mode for the CG model

We use the reduced CG model described in the introduction with the fol-
lowing benchmark characteristics:
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Figure 3: Initial function, advection field vector (ax = 1, ay = 4) is aligned
with dots but not aligned with mesh lines.

Figure 4: L1 and L∞ relative error between end and initial time, function of
the angle between the advection velocity vector and the mesh lines. Angle
−20 corresponds to the cartesian mesh.
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• 2D periodic boundary conditions in cartesian directions (x, y),

• The curvilinear mesh is made of oblic lines defined by

ξ1 = x− αy and ξ2 = y,

• The unstable initial distribution function f is obtained by linear modal
analysis.

Using Laplace and x Fourier transformations, eigenvalues ω for the CG
model function of k (Fourier variable in x direction) may be determined
through a dispersion relation. The k mode growth rate is the imaginary
part of ω, which has to be positive to be an unstable mode, see Shoucri [9].
We use k = 1/2 which is an unstable mode and has an associated growth
rate Im(ω) = 1/2, considering domain dimensions (x, y) in [0, 2π/k]× [0, 2π]
with a mesh of 128× 128 cells and initial condition:

f(t = 0, x, y) = sin(y) + ε cos(k x).

We perform a qualitative comparison between PSM computations on
cartesian and curvilinear meshes of a periodic-periodic instability for the
CG model for two different times, one at the beginning of the nonlinear
phase and the second at a late time, when most of small structures have
been dissipated. The numerical results are very similar even for the late
time for this complex and unstable flow.

The growth rate of the unstable mode is in good agreement in the linear
phase with the expected value Im(ω) = 1/2 for results on both meshes, see
figure 6.

5 Conclusion

The conservative PSM method with 1D directional splitting has been suc-
cessfully extended for the Guiding-Center model on curvilinear coordinates,
with a good agreement between cartesian and curvilinear meshes computa-
tions. Integration of the PSM method is in progress in the GYSELA code [7]
[8]. The use of curvilinear coordinates for the gyrokinetic model will follow
this development.
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