Closed-form expressions of the exact Cramer-Rao, bound for parameter estimation of BPSK, MSK, or QPSK waveforms

Jean-Pierre Delmas

To cite this version:
Jean-Pierre Delmas. Closed-form expressions of the exact Cramer-Rao, bound for parameter estimation of BPSK, MSK, or QPSK waveforms. IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2008, 15, pp.405 - 408. <10.1109/LSP.2008.921477>. <hal-01298715v2>

HAL Id: hal-01298715
https://hal.archives-ouvertes.fr/hal-01298715v2
Submitted on 30 May 2016
Closed-form expressions of the exact Cramer-Rao bound for parameter estimation of BPSK, MSK or QPSK waveforms

Jean-Pierre Delmas, Senior member, IEEE

Abstract

This paper addresses the stochastic Cramer-Rao bound (CRB) pertaining to the joint estimation of the carrier frequency offset, the carrier phase and the noise and signal powers of binary phase-shift keying (BPSK), minimum shift keying (MSK) and quaternary phase-shift keying (QPSK) modulated signals corrupted by additive white circular Gaussian noise. Because the associated models are governed by simple Gaussian mixture distributions, an explicit expression of the Fisher information matrix is given and an explicit expression for the stochastic CRB of these four parameters are deduced. Specialized expressions for low and high-SNR are presented as well. Finally, these expressions are related to the modified CRB and our proposed analytical expressions are numerically compared with the approximate expressions previously given in the literature.

Index terms: Stochastic Cramer Rao bound, Modified Cramer Rao bound, BPSK, MSK, QPSK.

EDICS Category: SAS-STAT,

Paper SPL-05038-2008.R1

1 Introduction

The stochastic Cramer-Rao bound (CRB) is a well known lower bound on the variance of any unbiased estimate, and as such, serves as useful benchmark for practical estimators. Unfortunately, the evaluation of this CRB is mathematically quite difficult when the observed signal contains, in addition to the parameters to be estimated, random discrete data and random noise. A typical example of such a situation that has been studied by many authors (see e.g., [1] and the references therein) is the observation of noisy linearly modulated waveforms that are a function of deterministic parameters such that the time delay, the carrier frequency offset, the carrier phase, noise and signal powers, as well as the data symbol sequence. Because the analytical computation of this CRB has been considered to be unfeasible, a modified CRB (MCRB) which is much simpler to evaluate than the exact CRB has been introduced in [2]. But this MCRB may not be as tight as the exact CRB [3] for joint estimation of all parameters. To circumvent this difficulty, asymptotic expressions at low [4] or high [5] signal-to-noise ratio (SNR) have been investigated. But unfortunately, these asymptotic expressions do not apply at moderate SNR, for which only combined analytical/numerical (see e.g., [5, 6, 1]) approaches are available until now.

In this paper, we investigate an analytical expression of the stochastic CRB (i.e., if the information symbols are viewed as nuisance parameters, and thus applicable in non data-aided estimation) associated with the joint estimation of the carrier frequency offset, the carrier phase and the noise and signal powers of BPSK, QPSK or MSK modulated signals corrupted by additive white circular Gaussian noise, which is valid for arbitrary SNR. This paper is organized as follows. After formulating the problem in Section 2, an explicit expression of the Fisher information matrix (FIM) associated with all the deterministic parameters is given in Section 3. Because the carrier frequency offset and the carrier phase parameters are decoupled from the signal noise and signal powers parameters, simple explicit expressions for the stochastic CRB of these four parameters are deduced. Specialized expressions for low and high-SNR are presented as well. Finally, in Section 4, our proposed analytical expressions are numerically compared with the previously given approximate expressions.
2 Problem formulation

Consider BPSK, QPSK or MSK modulated signals. The received signals are bandpass filtered and after down conversion the signal to baseband, the in-phase and quadrature components are paired to obtain complex signals. We assume Nyquist shaping and ideal sample timing so that the inter-symbol interference at each symbol spaced sampling instance can be ignored. In the presence of frequency offset and carrier phase, the signals at the output of the matched filters yield the observation vector \(y = (y_{k_0}, \ldots, y_{k_0+K-1}) \), with

\[
y_k = as_k e^{i2\pi k\nu} e^{i\phi} + n_k,
\]

for \(k = k_0, \ldots, k_0 + K - 1 \). \(\{s_k\} \) is a sequence of independent identically distributed (IID) data symbols taking values \(\pm 1 \) and \(\pm \sqrt{2}/2 \pm i\sqrt{2}/2 \) with equal probabilities for BPSK and QPSK respectively and for MSK are defined by \(s_{k+1} = is_k e_k \) where \(e_k \) is a sequence of independent BPSK symbols with equal probabilities where the original value \(s_{k_0} \) remains unspecified in the set \(\{+1, +i, -1, -i\} \). The deterministic unknown parameters \(a, \nu \) and \(\phi \) represent the amplitude, the carrier frequency offset normalized to the symbol rate and the carrier phase at \(k = 0 \). Finally, the sequence \(\{n_k\} \) consists of IID zero-mean complex circular Gaussian noise random variables\(^1\) of variance \(\sigma^2 \triangleq \frac{\text{var}[n_k]}{2} \). The symbols \(s_k \) are assumed to be independent from \(n_k \). If no a priori information is available concerning the transmitted symbols, the distribution of \(y \) is parameterized by \(\theta \triangleq (\nu, \phi, a, \sigma) \). We note that the MSK is modelled equivalently (see e.g., [7]) by \(s_k = i^{k-k_0} b_k s_{k_0} \) where \(b_k \) is another sequence of independent BPSK symbols \(\{-1, +1\} \) with equal probabilities. Consequently, similar to the BPSK and QPSK, \((y_k)_{k=k_0,\ldots,k_0+K-1}\) are independently non-identically distributed along the following mixture of circular Gaussian distribution\(^2\):

\[
p(y_k; \theta) = \frac{1}{L\pi\sigma^2} \sum_{l=1}^{L} \exp \left(-\frac{|y_k - as_l e^{i2\pi k\nu} e^{i\phi}|^2}{\sigma^2} \right),
\]

with \(s_{l,k} = \pm 1 \) \((L = 2)\), \(s_{l,k} = \pm \sqrt{2}/2 \pm i\sqrt{2}/2 \) \((L = 4)\) or \(s_{l,k} = i^{k-k_0} b_k s_{k_0} \) with \(b_l = \pm 1 \) \((L = 2)\) associated with BPSK, QPSK or MSK, respectively.

3 Stochastic CRB: analytical results

3.1 General closed-form expression

Using the independence of the random variables \(y_k \), the Fisher information matrix (FIM) is given (elementwise) by:

\[
(I_F)_{i,j} = -\sum_{k=k_0}^{k_0+K-1} E \left(\frac{\partial^2 \ln p(y_k; \theta)}{\partial \theta_i \partial \theta_j} \right),
\]

where the PDF’s (2.1) take the following forms:

\[
p(y_k; \theta) = \frac{1}{\sigma^2} \exp \left(-\frac{|y_k|^2 + a^2}{\sigma^2} \right) c(y_k),
\]

where \(c(y_k) \) is respectively equal to \(c(\frac{a}{\sigma^2} g_1(y_k)) \), \(c\left(\frac{a}{\sigma^2} \sqrt{2} g_1(y_k) \right) \) and \(c\left(\frac{a}{\sigma} g_3(y_k) \right) \) for the BPSK, QPSK and MSK respectively, with \(g_1(y_k) \overset{\text{def}}{=} 2\Re(e^{i2\pi k\nu} e^{i\phi} y_k^*) \), \(g_2(y_k) \overset{\text{def}}{=} 2\Im(e^{i2\pi k\nu} e^{i\phi} y_k^*) \) and \(g_3(y_k) \overset{\text{def}}{=} 2\Re(i^{k-k_0} e^{i2\pi k\nu} e^{i\phi} s_{k_0} y_k^*) \). Extending the approach used in [8] for the parameters \(a \) and \(\sigma \) only and in [9] for the direction of arrival (DOA) parameters, the following lemma is proved in Appendix A:

Lemma 1 The parameter \(\theta = (\nu, \phi, a, \sigma) \) is partitioned in two decoupled parameters \((\nu, \phi) \) and \((a, \sigma) \) in the FIM associated with the BPSK, QPSK and MSK:

\[
I_{\text{BPSK}} = I_{\text{MSK}} = \begin{bmatrix} I_1^{(1)} & O \\ O & I_2^{(2)} \end{bmatrix}, \quad I_{\text{QPSK}} = \begin{bmatrix} I_1^{(1)} & O \\ O & I_2^{(2)} \end{bmatrix}.
\]

\(^1\)Note that many papers consider the parameters \(a^2 \) and \(\sigma^2 \) denoted usually as the symbol energy \(E_s \) and the noise power spectral density \(N_0 \) as known. They usually suppose a unit variance for the noise and use the ratio \(\epsilon \overset{\text{def}}{=} (E_s/N_0)^{1/2} \) as the modulation amplitude, but in practice these two parameters are unknown as well.

\(^2\)Usually for such a mixture, explicit closed-form expressions of the CRB are not available.

\(^3\)Note that this product form does not extend to arbitray QAM (see e.g., [6, rel. (41)]) for the 16QAM).
with

\[I^{(1)}_B = 2\rho^2(1 - f_1(\rho)) \left[\frac{(2\pi)^2}{2\pi} \sum_{k=k_0}^{k_0+K-1} \frac{2\pi}{k} \right] \]

\[I^{(2)}_B = 2K \rho \alpha^2 \left[\frac{1 - f_2(\rho)}{2\sqrt{\rho}f_2(\rho)} \frac{2\sqrt{\rho}f_2(\rho)}{2(1 - 2\rho f_2(\rho))} \right] \]

\[I^{(1)}_Q = 2\rho^2(1 + (1 + \rho)f_1(\rho)) \left[\frac{(2\pi)^2}{2\pi} \sum_{k=k_0}^{k_0+K-1} \frac{2\pi}{k} \right] \]

\[I^{(2)}_Q = 2K \rho \alpha^2 \left[\frac{1 - f_2(\rho)}{2\sqrt{\rho}f_2(\rho)} \frac{2\sqrt{\rho}f_2(\rho)}{2(1 - 2\rho f_2(\rho))} \right] \]

where \(\rho \) is the SNR \(\frac{\sigma^2}{\pi} \) and \(f_1 \) and \(f_2 \) are the following decreasing functions of \(\rho \):

\[f_1(\rho) = \frac{2e^{-\rho\rho}}{\sqrt{2\pi}} \int_0^{+\infty} \frac{e^{-u^2}}{\cosh(u\sqrt{2\rho})} du, \quad f_2(\rho) = \frac{2e^{-\rho\rho}}{\sqrt{2\pi}} \int_0^{+\infty} \frac{u^2e^{-u^2}}{\cosh(u\sqrt{2\rho})} du. \]

The determinants of \(I^{(1)}_B \) and \(I^{(1)}_Q \) do not depend on the time \(k_0 \) at which the first sample is taken and consequently the CRB for the frequency does not depend on it either, but the CRB for the phase does. The minimum value for this CRB is attained for \(k_0 = -(K - 1)/2 \). This particular choice of \(k_0 \) renders \(I^{(1)}_Q \) and \(I^{(2)}_Q \) diagonal and we obtain in this case the following result, where the MCRB are straightforwardly derived from \([2] \):

\[\text{MCRB}(\theta_i) = \frac{1}{E_{y,\theta}} \left(\frac{\partial^2 \ln p(y|\theta)}{\partial \theta_i^2} \right), \quad i = 1, \ldots, 4. \]

Result 1 The CRB for the joint estimation of the parameters \((\nu, \phi, a, \sigma)\) associated with the BPSK and MSK are given by:

\[\text{CRB}(\nu) = \frac{6}{(2\pi)^2K(K^2 - 1)\rho(1 - f_1(\rho))} = \text{MCRB}(\nu) \left(\frac{1}{1 - f_1(\rho)} \right) \]

\[\text{CRB}(\phi) = \frac{1}{2K\rho(1 - f_1(\rho))} = \text{MCRB}(\phi) \left(\frac{1}{1 - f_1(\rho)} \right) \]

\[\text{CRB}(a) = \frac{a^2(1 - 2f_2(\rho))}{2K\rho(1 - f_2(\rho) - 2f_2(\rho))} = \text{MCRB}(a) \left(\frac{1 - 2\rho f_2(\rho)}{1 - f_2(\rho) - 2\rho f_2(\rho)} \right) \]

\[\text{CRB}(\sigma) = \frac{a^2(1 - f_2(\rho))}{4K\rho(1 - f_2(\rho) - 2f_2(\rho))} = \text{MCRB}(\sigma) \left(\frac{1 - 2\rho f_2(\rho)}{1 - f_2(\rho) - 2\rho f_2(\rho)} \right). \]

The CRBs associated with the QPSK are obtained by replacing \(f_1(\rho) \) and \(f_2(\rho) \) by, respectively, \((1 + \rho)f_1(\frac{\rho}{2})\) and \(f_2(\frac{\rho}{2}) \) in (3.3), (3.4), (3.5) and (3.6).

Note that the proof of the decoupling that is not trivial (see (5.11),(5.12)) has not appeared in the literature despite the first expressions CRB(\(\nu\)) and CRB(\(\phi\)) coincide with the expressions given in [10] for CRB(\(\nu\)) with \((\phi, a, \sigma)\) known and CRB(\(\phi\)) with \((\nu, a, \sigma)\) known, for the BPSK only. The first expressions CRB(\(\nu\)) and CRB(\(\phi\)) does not appear in [10] for MSK and QPSK including for \((\phi, a, \sigma)\) or \((\nu, a, \sigma)\) known. Using the definition of \(f_1 \) and \(f_2 \), these asymptotic CRBs coincide with the MCRB for high SNR. This extends a property proved in [3] for a scalar parameter only.

3.2 Low-SNR expression

For low SNR, \(f_1(\rho) \) and \(f_2(\rho) \) approach 1. We resort to a Taylor series expansion of these functions obtained by expanding \(e^{-\rho} \) and \(\cosh(u\sqrt{2\rho}) \) around \(\rho = 0 \). Then, using the values \((2n)!/2^n n!\) of the moments of order \(2n\) of zero-mean unit variance Gaussian random variables, we obtain after tedious, but straightforward algebraic manipulations:

\[f_1(\rho) = 1 - 2\rho + 4\rho^2 - \frac{40}{3}\rho^3 + \frac{208}{3}\rho^4 + o(\rho^4), \]

\[f_2(\rho) = 1 - 4\rho + 16\rho^2 - \frac{256}{3}\rho^3 + \frac{12544}{21}\rho^4 + o(\rho^4). \]
Inserting these expansions in Result 1 allows us to prove the following result:\footnote{Of course these bounds are going to infinity as the SNR decreases to zero, consequently for the parameters ν and ϕ with finite support, these results are useful for not too low-SNR only (typically in the range $[-5\text{dB}, 0\text{dB}]$).}

Result 2 The CRB for the joint estimation of the parameters (ν, ϕ, a, σ) associated with the BPSK, MSK and QPSK are given for low SNR by:

\[
\begin{align*}
\text{CRB}(\nu) &= \frac{6}{(2\pi)^2 K (K^2 - 1)} L^1 L^1 L^1 (1 + L \rho + o(\rho)) = \frac{L^1 L^1 L^1}{L^2 \rho^{L-1}} (1 + L \rho + o(\rho)) \\
\text{CRB}(\phi) &= \frac{1}{2 K L^2 \rho} (1 + L \rho + o(\rho)) = \frac{L^1}{L^2 \rho^{L-1}} (1 + L \rho + o(\rho)) \\
\text{CRB}(a) &= \frac{a^2}{K \alpha L \rho^L} (1 + L \rho + o(\rho)) = \frac{2}{\alpha L \rho^{L-1}} (1 + L \rho + o(\rho)) \\
\text{CRB}(\sigma) &= \frac{a^2}{K \beta L \rho^{L-1}} (1 + \gamma L \rho^{3-L/2} + o(\rho^{3-L/2})) = \frac{4}{\beta L \rho^{L-2}} (1 + \gamma L \rho^{3-L/2} + o(\rho^{3-L/2})),
\end{align*}
\]

with $L = 2$ for BPSK and MSK and $L = 4$ for QPSK, and $\alpha_2 = 4$, $\alpha_4 = 16/3$, $\beta_2 = 2$, $\beta_4 = 16/3$, $\gamma_2 = -16/3$ and $\gamma_4 = 4$.

We note that (3.7) and (3.8) for BPSK and QPSK are refinements of the expressions of CRB(ν) and CRB(ϕ) given in [4].

3.3 High-SNR expression

For high SNR, the MCRB approaches the CRB at the same rate that $f_1(\rho)$ and $f_2(\rho)$ approach 0. Because we prove in Appendix B that these functions are bounded above by $e^{-\rho/\sqrt{2\pi}}$ and more precisely that $f_1(\rho)/e^{-\rho/\sqrt{2\pi}}$ tends to 1 when ρ tends to ∞, the CRB are practically equal to the MCRB for moderate SNR. For example: $\rho = 2$ (3dB), and $\rho = 4$ (6dB)] give respectively the upper bound 0.05 and 0.005 for $f_1(\rho)$ and $f_2(\rho)$, and consequently the ratios CRB/MCRB is around one from these values of SNR.

4 Numerical results

The analytical result 1 is numerically compared with the approximations given in result 2 and to the approximations given in [4] for CRB(ν) and CRB(ϕ) of BPSK and QPSK at low SNR.

In these conditions, we see good agreement between the numerical values derived from results 1 and 2 in a large range of low SNR. Furthermore, we note that the ratio CRB/MCRB is unbounded except for the noise power of BPSK and MSK for which it tends to 2 when the SNR tends to 0.
Fig. 1 Ratio $\frac{\text{CRB}(\nu)}{\text{MCRB}(\nu)} = \frac{\text{CRB}(\phi)}{\text{MCRB}(\phi)}$ at low SNR: (a) exact value given by (3.3), (3.4), (b) approximate value given by (3.7), (3.8), (c) approximate value given in [4].

Fig. 2 Ratio $\frac{\text{CRB}(\alpha)}{\text{MCRB}(\alpha)}$ at low SNR: (a) exact value given by (3.5), (b) approximate value given by (3.9).
5 Appendix: Proof of Lemma 1

To evaluate the FIM (3.2) for the BPSK, the partial derivatives are straightforwardly derived, in particular:

\[
\begin{align*}
\frac{\partial^2 \ln p(y_k; \theta)}{\partial \phi^2} &= \frac{a^2 g_2(y_k)}{\sigma^4} - \frac{a g_1(y_k)}{\sigma^2} \tanh \left(\frac{a g_1(y_k)}{\sigma^2} \right) \\
\frac{\partial^2 \ln p(y_k; \theta)}{\partial a \partial \phi} &= -\frac{a g_1(y_k) g_2(y_k)}{\sigma^4} \cosh^2 \left(\frac{a g_1(y_k)}{\sigma^2} \right) - \frac{g_2(y_k)}{\sigma^2} \tanh \left(\frac{a g_1(y_k)}{\sigma^2} \right) \\
\frac{\partial^2 \ln p(y_k; \theta)}{\partial \sigma^2} &= (2\pi k)^2 \frac{\partial^2 \ln p(y_k; \theta)}{\partial a \partial \sigma} \\
\frac{\partial^2 \ln p(y_k; \theta)}{\partial a \partial \sigma} &= 2a^2 g_1(y_k) g_2(y_k) \frac{1}{\sigma^5} \cosh^2 \left(\frac{a g_1(y_k)}{\sigma^2} \right) + \frac{2ag_2(y_k)}{\sigma^3} \tanh \left(\frac{a g_1(y_k)}{\sigma^2} \right) \\
\frac{\partial^2 \ln p(y_k; \theta)}{\partial \sigma \partial \phi} &= (2\pi k)^2 \frac{\partial^2 \ln p(y_k; \theta)}{\partial a \partial \sigma} \\
\frac{\partial^2 \ln p(y_k; \theta)}{\partial a \partial \sigma} &= 2a^2 g_1(y_k) g_2(y_k) \frac{1}{\sigma^5} \cosh^2 \left(\frac{a g_1(y_k)}{\sigma^2} \right) + \frac{2ag_2(y_k)}{\sigma^3} \tanh \left(\frac{a g_1(y_k)}{\sigma^2} \right)
\end{align*}
\]

Using the regularity condition \(\frac{\partial}{\partial a} \int p(y_k; \theta)dy_k = \int \frac{\partial p(y_k; \theta)}{\partial a} dy_k \) which is fulfilled for finite mixtures of Gaussian distributions, the following property holds: \(E \left(\frac{\partial \ln p(y_k; \theta)}{\partial a} \right) = 0 \). With \(\frac{\partial \ln p(y_k; \theta)}{\partial a} = -\frac{2a g_1(y_k)}{\sigma^2} + \frac{2g_2(y_k)}{\sigma^4} \tanh \left(\frac{a g_1(y_k)}{\sigma^2} \right) \), we obtain

\[
E \left(g_1(y_k) \tanh \left(\frac{a g_1(y_k)}{\sigma^2} \right) \right) = 2a.
\]

This identity enables us to straightforwardly derive the terms of \(\mathbf{I}_B^{(2)} \) using the definition of the function \(f_2(\rho) = E \left(\frac{\partial^2 \ln p(y_k; \theta)}{\partial \rho^2} \cos \frac{1}{\sigma^2} (a g_1(y_k)) \right) \), where the random variable \(g_1(y_k) \) is equally weighted mixed Gaussian \(\mathcal{N}(-2a; 2\sigma^2) \) and \(\mathcal{N}(2a; 2\sigma^2) \).

To evaluate \(\mathbf{I}_B^{(1)} \), we note that \(g_1(y_k) = 2a s_k + e^{i2\pi k v} e^{i\phi_n_k} + e^{-i2\pi k v} e^{-i\phi_n_k} \) and \(g_2(y_k) = -i \left(e^{i2\pi k v} e^{i\phi_n_k} - e^{-i2\pi k v} e^{-i\phi_n_k} \right) \). Because \(s_k \) and \(n_k \) are independent and the two Gaussian random variables \(e^{i2\pi k v} e^{i\phi_n_k} + e^{-i2\pi k v} e^{-i\phi_n_k} \) and \(e^{i2\pi k v} e^{i\phi_n_k} - e^{-i2\pi k v} e^{-i\phi_n_k} \) are uncorrelated and therefore independent, the
three random variables $s_k, e^{i2\pi k\nu}e^{i\phi}n_k + e^{-i2\pi k\nu}e^{-i\phi}n_k$ and $e^{i2\pi k\nu}e^{i\phi}n_k - e^{-i2\pi k\nu}e^{-i\phi}n_k$ are collectively independent and thus $g_1(y_k)$ and $g_2(y_k)$ are independent. Using the definition of the function $f_1(\rho) = \mathbb{E}\left(\frac{1}{\cosh^2\left(\frac{y_k+1}{\sigma^2}\right)}\right)$, the terms of $I_1^{(1)}$ are derived.

Because $g_1(y_k)$ and $g_2(y_k)$ are independent and zero mean, $\mathbb{E}\left(\frac{\partial^2 \ln p(y_k, \theta)}{\partial a \partial \phi}\right) = \mathbb{E}\left(\frac{\partial^2 \ln p(y_k, \theta)}{\partial a \partial \nu}\right) = \mathbb{E}\left(\frac{\partial^2 \ln p(y_k, \theta)}{\partial \sigma \partial \phi}\right) = 0$. This implies that the parameters (ν, ϕ) and (a, σ) are decoupled in the FIM.

For the MSK, the derivations follow the same lines, replacing $g_1(y_k)$ by $g_3(y_k)$.

Finally for the QPSK, evaluating the partial derivatives $\frac{\partial^2 \ln p(y_k, \theta)}{\partial a \partial \nu}$ and taking their expectation are derived in the same way, provided the log-likelihoods associated with $g_1(y_k)$ and $g_2(y_k)$ are gathered, and the hypothesis of independence of $\Re(s_k)$ and $\Im(s_k)$ is taken into account.

6 Appendix: Bounds on $f_1(\rho)$ and $f_2(\rho)$

For high SNR, using the inequality $\frac{1}{\cosh(u/\sqrt{2\\pi})} < 2e^{-u/\sqrt{2\\pi}}$, we obtain after simple algebraic manipulations:

$$f_1(\rho) < 4Q(\sqrt{2\rho}) \quad \text{and} \quad f_2(\rho) < 4 \left((2\rho + 1)Q(\sqrt{2\rho}) - \sqrt{2\rho} e^{-\rho} \right), \quad (6.13)$$

where $Q(x)$ is the error function $\int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du$ classically bounded above by $\frac{1}{\sqrt{2\pi}} e^{-x^2}$. Applying this upper bounds in (6.13) gives: $f_1(\rho) < \frac{e^{-\rho}}{\sqrt{2\pi}}$ and $f_2(\rho) < \frac{e^{-\rho}}{\sqrt{2\pi}}$. To specify the upper bound of $f_1(\rho)$, we use the following expansion

$$\frac{1}{\cosh(u/\sqrt{2\\pi})} = 2e^{-u/\sqrt{2\\pi}}(1 + e^{-u/\sqrt{2\\pi}})^{-1} = 2 \sum_{k=0}^{+\infty} (-1)^k e^{-(k+1)u/\sqrt{2\\pi}}.$$

Inserting this into $f_1(\rho)$, we obtain after simple algebraic manipulations the following alternating expansion:

$$f_1(\rho) = 4 \sum_{k=0}^{+\infty} (-1)^k e^{-(k+1)^2/2}Q((k+1)/\sqrt{2\rho}). \quad (6.14)$$

Using the standard bounds $\frac{1}{\sqrt{2\pi}} (1 - \frac{1}{x^2}) e^{-x^2/2} \leq Q(x) \leq \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ and $\ln(2) = -\sum_{k=1}^{+\infty} \frac{(-1)^k}{k}$ in (6.14) proves after simple algebraic manipulations that $f_1(\rho)/\frac{\sqrt{\ln(2)}}{\sqrt{2\pi}}$ tends to 1 when ρ tends to ∞.

References

