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Abstract

This paper deals with acoustic monitoring of sodium boiling in a Liquid Metal Fast Breeder Reactor
(LMFBR) based on Auto Regressive (AR) models which have low computational complexities. Some
authors have used AR models for sodium boiling or sodium-water reaction detection. These works are
based on the characterization of the difference between fault free condition and current functioning of
the system. However, even in absence of faults, it is possible to observe a change in the AR models due
to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish
a change in operating mode in absence of faults and a change due to presence of faults.

In this paper we propose a new approach for boiling detection based on the estimation of AR models
on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made
by comparing their coefficients by two statistical methods, multiple linear regression (LR) and Support
Vectors Machines (SVM). The proposed approach takes into account operating mode informations in
order to avoid false alarms.

Experimental data include non-boiling background noise data collected from Phenix power plant
(France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives,
France) and boiling condition data generated in laboratory. High boiling detection rates as well as low
false alarms rates obtained on these experimental data show that the proposed method is efficient for
boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into
the AR models that can be clearly detected.

Keywords – Fault detection, Sound analysis, Nuclear plant, Autoregressive models, Classification meth-
ods.
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Nomenclature
1L A vector of length L whose components all equal 1
ai A vector of consecutive values of the i−th ARLPC coefficient for a given sensor
arw The one-sensor AR model associated to the record by sensor r for signal w
aw The multi-sensor AR model associated to the signal w
ā A mean multi-sensor model
Ai,• The i−th row of the A matrix
[A |B] Concatenation of the A and B matrices
α A real number in [0, 1] representing a prevision interval risk
αw A real coefficient associated to signal w
B A parameter matrix
d The total number of environment parameters
ew A vector representing the non-explained part of aw model
F Frequency of the acoustic signals
L Size of the learning set
N Number of samples of a background signal
p The total number of components of the multi-sensor models
pr The number of components of the AR models for sensor r
R The total number of sensors
s[n] The n−th sample of the signal s
ŝ[n] The estimation of the n−th sample of the signal s
srw Acoustic signal of signal w recorded on sensor r
(srw)[k−pr:k−1] A vector of length pr containing all the samples of signal srw whose

sample number lies between k − pr and k − 1
v, w Signal numbers
xw A vector whose components are the values of the environment parameters

of signal w
∗ An optimal solution.

1 Introduction

Liquid Metal Fast Breeder Reactor (LMFBR) is highly efficient in power production. Liquid
sodium can be used as coolant because of its high heat conductivity. As in every production plant,
early fault detection method is needed for system safety. Indeed, the earlier a fault is detected,
the smaller are the plant’s damage. In a LMBFR, the reactor core is one of the main parts
concerned with monitoring. The core of a fast reactor consists of fuel and reflector assemblies
together with control rods. Fuel assemblies are placed in central section of the core and produce
the fission reaction while control rods control the reaction rate. Heat produced in the fission
reaction is carried outside by the coolant (that can be liquid sodium for example).

If for any unknown reason the heat removal from the fuel is degraded, the coolant temper-
ature rises and coolant boiling might follow. This decreased heat removal can endanger the
fuel integrity. Therefore, real time monitoring of the core temperature is necessary. Efficient
methods based on temperature measurements are used for early boiling detection. In order not
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only to strengthen but also to diversify the detection methods, acoustic method is proposed in
this paper. This method is based on measurement of ambient sound record through wave-guide.
The recorded data can further be analysed by different methods such as wavelet analysis, Power
Spectral Density (PSD) and autoregressive modelling.

Carey (1979) had investigated the factors influencing background noise of a reactor. Data
were collected over 17 months period and then analysed to determine the linear average spectra,
auto and cross power spectra. Acoustic sound power is estimated and compared with results. It
was shown that flow velocity influences acoustic power level and noise field can be considered as
weakly stationary. Hayashi et al. (1996) developed a twice squaring method for real time sodium
boiling detection. In their method, signal to noise ratio is enhanced by non-linear amplification
of a band limited signal. Band-pass frequency is selected from PSD graphs, focussing on pulsive
nature of boiling signal. It consists of five steps: band-pass filtering, squaring, another band-pass
filtering and squaring and integration. A low pass filter is then applied to obtain the feature
signal. The threshold for boiling detection is later calculated from the mean and the standard
deviation of the feature signal in non-boiling conditions. This approach is successful if the mean
and the standard deviation are always the same for signals. But if not, it sets up the problem of
choosing an adequate value for the detection threshold.

Another method proposed by researchers is autoregressive model-based detection techniques.
Hayashi (1997) has used Auto-Regressive (AR) models for sodium leak detection. He assumed
that in normal functioning conditions, the background signal is stationary and then the prediction
error from the AR model follows a Gaussian distribution. He has shown that prediction error
deviates from gaussian distribution in non-normal functioning conditions. Inujima et al. (1982)
also worked on boiling detection by analysing residual time series data of autoregressive model. In
both approaches (Hayashi, 1997; Inujima et al., 1982), the selection of the reference AR model is
difficult when the AR models obtained from different signals do not have the same characteristics.
Indeed, the AR models change with the operating modes of the LMFBR. In order to avoid false
alarms, it is then critical to distinguish a change in the operating mode in absence of faults and
a change due to faults.

In this paper, we present a new approach for boiling detection based on classification of
the AR models parameters estimation. We propose to divide background signals into multiple
non-overlapping time windows and then estimate the AR models on each. The choice of AR
model is motivated by the online implementation of the proposed method which imposes a low
computational complexity method. There after models can be classified into boiling and non-
boiling models by multiple linear regression and support vector machines.

The paper is organized in 5 sections. Section 2 presents the experimental data, deals with fault
condition data generation and data preprocessing. In section 3 two boiling detection methods
are proposed. Section 4 provides the results of the methods on the experimental data. Summary
and conclusion are outlined in section 5.

2 Presentation of the experimental data

2.1 Nuclear Plant acoustic background noise recording in fault free-case

The original data furnished by the CEA consist of records of the acoustic background noise of
the Phenix nuclear power plant made in 2009 (see Paumel et al. (2013) or Dall’Ava et al. (2009)).
The data are recorded in normal functioning of the nuclear plant without any boiling. The data
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are recorded by two wave guides called sensors 1 and 2 in the paper. The original sampling
frequency is 500 kHz. The records were performed for different operating modes (or environment
parameters). Seven environment parameters listed in table 1 were considered for the test.

Table 1: List of the environment parameters considered for the Phenix nuclear power plant

Parameter Unit
Power of the reactor MW
Inlet temperature of the core ◦C
Outlet temperature of the core ◦C
Primary pump 1 speed RPM
Primary pumps 2 and 3 speed RPM
Secondary pumps speed RPM
Overpressure mB

2.2 Data preprocessing

An example of raw signal spectrum for frequencies lower than 10 kHz is shown in figure 1(a).
In no boiling condition, the background signal is made of noise from different sources like liquid
coolant cavitation, vortex flow, shaft vibration and mechanical pump noise. Each part of the
background noise could disturb the boiling detection thus the signals generated by these sources
should be filtered in order to improve boiling detection. The pumps noise are the most energical
part of the background noise. Fortunately, as it can be seen in figure 1(a) the most energical
contribution of pumps noises are under 1 kHz and the sodium boiling acoustic noise frequencies
lie between 1 kHz and 100 kHz (Hayashi et al., 1996). Therefore, the frequencies under 1 kHz
must be filtered. In order to do that a 5−th order Butterworth filter with 2 kHz cut-off frequency
is applied on the raw signal for removal of the most energetical parts of the pump noise. This
cut-off frequency was chosen to make sure to remove the frequencies below 1 kHz. The spectrum
of the filtered signal is shown on figure 1(b). It can be seen that the high amplitudes in low
frequencies upto 2 kHz have been removed. The filtered signals are used in the rest of the paper.
We assume the non-existence of cavitation, vortex and shaft vibrations in the LMFBR acoustic
background noise during the experiments.

2.3 Boiling data generation

Background noise data supplied by CEA contains only records during normal functioning (non-
boiling) of the power plant. But to check the efficiency of our proposed method, background noise
in boiling conditions are needed. As these data are not available, one could record liquid sodium
boiling sound and inject it into the non-boiling background noise to obtain boiling conditions
background noise. But it is very complicated to boil sodium (at a temperature near 900 ◦C)
in steady and controlled conditions. This experience would require a huge investment for the
re-appropriation of the boiling sodium techniques.

It could then be interesting to substitute liquid sodium for another liquid for which the
boiling experience will be simpler to perform. Bomeluberg (1968) has investigated applicability
of water model testing instead of liquid metal tests by dimensional analysis. He has established
relationship between cavitation, vortex and other flow problems in liquid metal with that of water.
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(a) Raw signal spectrum (b) Filtered signal spectrum

Figure 1: Comparison of the spectrum of raw signal and filtered signal for frequencies lower than
10 kHz.

Water is suggested as potential substitute of liquid metal with sufficient degree of accuracy when
hydraulic characteristics are concerned. Prakash et al. (2011) have also used water instead of
sodium for hydraulic experimental studies on a fast breeder reactor due to similar hydraulic
characteristics of sodium and ease of testing. But one must be careful as far as the heat transfer
is concerned.

The researches developed by the CEA (see Vanderhaegen et al. (2013)) show that complete
thermal hydraulic and acoustic scaling of a sodium boiling loop to a water boiling loop is impos-
sible. Therefore, a perfect transposition of the boiling sound source is impossible due to the large
difference between the thermal diffusivity of water and sodium. However a partial transposition
with a scale reduction factor and a power reduction factor can be assumed possible. To generate
the background noise in boiling conditions, we have recorded water boiling sound afterwards we
have injected it into the background noise supplied by the CEA.

The water boiling experiment was carried out at the Indian Institute of Technology Kharag-
pur. It was done in a steel container of 15 cm diameter and 8.5 cm height placed above an electric
heater of power capacity 1000 W. Experimental set-up is shown in Figures 2 and 3. The trans-
ducer used was a B&K 4136 1/4" condenser microphone with a range of 4 Hz to 70 kHz. The
sensitivity was 1.6 mV/Pa. This was used with a B&K 2804 microphone power supply which
provided a 200 V polarisation voltage to the B&K 2669 microphone pre-amplifier. The high
frequency boiling noise was acquired using a B&K PULSE analyzer with sampling frequency of
262144 Hz. The overall ambient noise level in the laboratory before the boiling took place is 28
dBA.

The boiling sound was recorded at four different stages depending on the speed of boiling. The
first two stages correspond respectively to the two stages of nucleate boiling i.e. isolated bubbles
regime and slug and columns regime. The third and the fourth ones correspond respectively
to transitional boiling and film boiling as described in (Lienhard, J. H. IV, Lienhard, J. H. V,
2000).

2.4 Boiling condition data generation

We assume that the acoustic effect of the boiling is additive. As the boiling record sampling
frequency is lower than the background noise frequency, the sampling frequency of the background
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Figure 2: Boiling Experiment Set-up

Figure 3: Line diagram of the experimental Set-up

signal has been reduced to 262 144 Hz.
Let ss be an example of background noise of the nuclear power plant in non-boiling op-
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eration and sb be the boiling signal of common sampling frequency F = 262 144 Hz. Let
M = min(Ns, Nb) where Ns is the number of points of ss and Nb is the number of points of sb.

Let ssn and sbn the signals of duration
M

F
seconds obtained respectively from ss and sb after

taking the first M points and then normalizing by dividing each by its standard deviation. The
output signal is generated by the following formula:

sβ,t[n] =


ssn[n] if n < m

(1− β)ssn[n] + βsbn[n−m+ 1] otherwise
(1)

where m = bF × tc (the integer part of F × t) is the number of the sample corresponding to t,

the time of the onset of boiling (0 ≤ t ≤ M

F
) and β ∈ [0, 1] is the proportion of boiling noise

injected.
The Signal to Noise Ratio (SNR) is calculated by the formula:

SNR = 10 log10

(
σ2b
σ2s

)
where σ2b is the variance of boiling noise and σ2s is the variance of the signal without boiling. As
both signal are divided by their standard deviation before the weighted addition (1), the SNR
can be calculated as:

SNR = 20 log10

(
β

1− β

)
An example of time domain representation of non-boiling signal and boiling signal with

different SNR is provided by Figure 4. A comparison of the spectra of the non-boiling background
signal of the LMFBR and the water boiling noise record is provided by Figure 5.

From the figures 4 and 5, it can be noticed that the LMFBR non-boiling signal has dominant
components between 2 and 4 kHz while the water boiling signal has dominant components for
frequencies greater than 2 kHz. Moreover, in time domain, it is difficult to distinguish graphically
the non-boiling signal from the boiling signal with different SNR.

3 Presentation of the method

Our proposed method (see figure 6) is a supervised learning process that consists in two steps:
learning and test. In the learning step, we propose to divide each acoustic background signal
of the learning database into little non-overlapping time windows. A sliding window without
overlapping is used for this purpose. Afterwards, the AR models corresponding to each window
are estimated and two statistical techniques (multiple linear regression (LR) and Support vector
machines (SVM)) are used for characterization of the current AR model class (non-boiling or
boiling). The LR uses an off-line estimated normal model of background noises in no boiling
condition and detects a fault if the current estimated model deviates from the normal model.
The SVM starts with off-line classification of boiling and no boiling background noises models
into two different classes and online supervision is done by classifying the current estimated
model into one of the classes. The AR models estimation method is proposed, afterwards the
classification methods are introduced.
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(a) Non-boiling signal in time domain (b) SNR of −19 dB

(c) SNR of −3.5 dB (d) SNR of 12 dB

Figure 4: Comparison of the time domain data of non-boiling signal and boiling signal for
different SNR.

3.1 AR model estimation

Consider records of N samples by R different sensors sw =
(
s1w s

2
w ... s

R
w

)T of the signal on
time window N/F , where w is the signal number, srw is the vector of N samples recorded by
the sensor r (r = 1, · · · , R) and F is the sampling frequency. Assuming srw is stationary, the
pr−order AR model associated to srw is the vector arw =

(
arw,1, a

r
w,2, . . . , a

r
w,pr

)
such as each

sample srw[n] can be estimated as a linear combination of the past pr values (srw)[n−pr:n−1] =

(srw[n− pr], srw[n− pr + 1], . . . , srw[n− 1])T as described by equation (2):

ŝrw[n] = −arw (srw)[n−pr:n−1] (2)
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(a) A non-boiling background noise spectrum

(b) A water boiling noise spectrum

Figure 5: Comparison of a power plant non-boiling spectrum with a water boiling noise spectrum.

arw is calculated by minimizing the total prediction error calculated as:

Erw =
1

N

N∑
k=1

(srw[k]− ŝrw[k])2

=
1

N

N∑
k=1

(
srw[k] + ars (srw)[k−pr:k−1]

)2
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Figure 6: Summary of our proposed method

It has been proved (Makhoul, 1975; O’Shaughnessy, 1988) that arw is solution of the equation
(3):

Φr
wa

r
w = −φrw (3)

with φrw a vector of dimension pr defined by the formula:

φrw[i] =

N∑
k=i

srw[k]srw[k − i], i = 1, . . . , pr (4)

and Φr
w a pr × pr symmetrical matrix defined as:

(Φr
w)i,j = φrw[i− j], 1 6 i, j 6 pr (5)

The equations (3) are known as the Yule-Walker equations.

With the R sensors of the LMFBR, R different AR models are estimated solving Yule-Walker
equations. One could combine these R models into a unique multi-sensor AR model:

aw =
(
a1w,1, · · · , a1w,p1 , a

2
w,1, · · · , a2w,p2 , . . . a

R
w,1, · · · , aRw,pR

)T
Let p =

(
R∑
r=1

pr

)
the total number of components of the multi-sensor model. In the rest of this

paper, the multi-sensor model aw is used instead of the R one-sensor models arw (r = 1, . . . , R).
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3.2 The monitoring method

Once the multi-sensor AR model is obtained, the next step is to classify this latter model as
boiling model or non-boiling model. Two different statistical techniques are used for this purpose:
multiple Linear Regression (LR) and Support Vectors Machines (SVM). The LR monitoring
method is a model based method built from a learning database of non-boiling models. It predicts
the current model characteristics in non-boiling and the monitoring is made by comparing the
true current model characteristics to the ones predicted. As for the SVM monitoring method, it
is built from a learning database of two classes: non-boiling and boiling models. The monitoring
is done by classifying the current model into one of these two classes.

3.2.1 Model based approach

We assume that, in non-boiling functioning of the LMFBR, some useful information can be
extracted from the values of the environment parameters in order to characterize the multi-sensor
AR models in normal functioning of the LMFBR. Let’s d be the total number of environment
parameters of the LMFBR taken into consideration. We therefore assume that in non-boiling
functioning, any multi-sensor AR model aw could be written as:

aw = a+Bxw + ew (6)

where a = (a1, · · · , ap)T is an unknown mean multi-sensor model independent from w,

B =


b1,1 · · · b1,d
b2,1 · · · b2,d
... · · ·

...
bp,1 · · · bp,d

 ∈ Rp×d (7)

is a constant unknown matrix to be determined, xw = (xw,1, xw,2, . . . , xw,d)
T with xw,j (j =

1, . . . , d) the value of the j−th environment parameter (also called descriptor) for the model aw
and
ew = (ew,1, ew,2, . . . , ew,p)

T is a noise vector with zero expectation and constant variance. Bxw
can be considered as the variability of aw explained by the environment parameters and ew the
non explained part.

The unknown vector a and matrix B can be estimated on a learning set {a1, . . . , aL} of
non-boiling functioning multi-sensor models for which the value of the operating parameters are
known. Indeed, equation (6) is equivalent to the following one:

aTw = a T + xTwB
T + eTw (8)

Equation (8) can be written for the whole learning set as: aT1
...
aTL

 =

 a T

...
a T

+

 xT1
...
xTL

BT +

 eT1
...
eTL


or simply:

A = A+XBT + E

= 1L a+ +XBT + E

11



I.C. GERALDO et al. (2014)

with 1L = (1, · · · , 1)T a vector of size L which components all equal 1. Finally,

A = Y DT + E (9)

with D = [a |B] is the concatenation of vector a and B matrix and Y = [1L |X] is the concate-
nation of vector 1L and X matrix.

In equation (9), A and Y (called the learning design matrix ) are known but E is unknown.
The least-squares estimator D̂ of D (Montgomery et al., 2012; Saporta, 2006) is given as:

D̂ = ATY
(
Y TY

)−1 (10)

Once the estimator D̂ of D is calculated, an estimation of A can be calculated as: Â = Y D̂T .
For any multi-sensor AR model aw for which the descriptors values xw = (xw,1, xw,2, . . . , xw,d)

T

are known, a prevision of aw in non-boiling functioning can be calculated as:

âw = D̂yw (11)

where yw = [1 |xTw]T .
For a given α ∈ [0, 1], a (1 − α)−prevision interval on the i−th component of aw can be

calculated as described in (Saporta, 2006):

(D̂i,•)yw ± γσ̂i
√

1 + yTw (Y TY )−1 yw (12)

with D̂i,• a 1−row matrix whose components are the i−th row of D̂, γ the
(
1− α

2

)
−quantile of

the Student distribution with L− d− 1 degrees of freedom and σ̂k calculated as:

σ̂i =

√
‖Ai,• − Âi,•‖2
L− d− 1

with Ai,• the i−th row of A.

Validity of the model Some precautions must be taken as far as LR is concerned:

1. The matrix Y TY (equation (10)) must be invertible i.e. its determinant must not equal or
near zero. A useful criteria to check that is the 2-norm condition number (the ratio of the
largest eigenvalue of Y TY to the smallest). It is well known that large condition numbers
indicate a nearly singular matrix.

2. Steadiness of the D matrix: It is important to check that none of the models of the
learning set significantly influences the values of the components of the D̂ matrix. In other
words, it must be checked that if one learning model is withdrawn from the learning set,
the components of D̂ will not completely change. The Cook distance (Saporta, 2006) can
be used for this purpose. To check that an observed multi-sensor model aw of the learning
set, corresponding to the w−th row of Y , does not influence significantly the value of the
i−th row of D̂, D̂i,•, Cook distance of the model aw with regards to D̂i,• is calculated as:

Zw,i =

(
D̂i,• − D̂(w)

i,•

) (
YTY

) (
D̂i,• − D̂(w)

i,•

)T
(d+ 1)σ̂2i

where D̂(w) is the estimate D after withdrawal of the model aw from the learning set.
Zw,i ≥ 1 means that aw is an outlier i.e. it has a significant influence on the values of the
coefficients D̂. This criteria also will be used to check the validity of the model.
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The detection process The D̂ matrix and the σ̂i’s (i = 1, · · · , p) are now known. For any
time window signal sw, the corresponding multi-sensor AR model aw will be classified into boiling
or non-boiling models. If the values of the environment variables are known, one could calculate
the prevision intervals for each of the p components of aw. The main point of the detection is
the following: it is assumed that in normal functioning of the reactor, the true values of the
components should be in their prevision interval with 100 ∗ (1 − α)% confidence (α ∈ [0, 1]
the risk associated to the prevision interval). The multi-sensor model aw can be detected as a
boiling model if the number of its components out of their prevision interval exceeds a detection
threshold MNOC (Maximum Number of Outliers Coefficients) (an integer between 0 and p). The
detection algorithm is given by algorithm 1.

Algorithm 1 Diagnosis with AR-LR
Inputs: the B̂ matrix, the σ̂’s (i = 1, · · · , p), the learning design matrix Y , the current data sw
collected on a sliding window, a threshold MNOC ∈ {0, . . . , p} and α ∈ [0, 1].

1. Calculate the AR models corresponding to sw by using (3).

2. Calculate the multi-sensor model aw.

3. Calculate the (1− α)−prevision interval for each component of aw using (12).

4. Calculate NOC(aw) like the Number of Outlier Coefficients (i.e. are out of their prevision
interval)

5. The multi-sensor model aw is defective if NOC(aw) > MNOC and normal otherwise.

3.2.2 Support Vectors Machines (SVM)

In the AR-LR method, the classification of the multi-sensor models into boiling and non-boiling
models is based on the values of their components and those of the environment variables. For a
given SNR, SVM is used to do the same classification. The SVM method aims to find a maximal
margin hyperplane separating the two classes: boiling and non-boiling models (see figure 7).

Figure 7: Illustration of the principle of SVM for classification into two classes (Ralaivola, 2010)

Let {a1, a2, . . . , aL} the learning set of multi-sensor AR models. Unlike the LR, this learn-
ing set is now composed of both boiling and non-boiling AR models (classes are {non-boiling,

13



I.C. GERALDO et al. (2014)

boiling} or {+1 , -1}). Let K a gaussian kernel calculated for two multi-sensor models aw =
(aw,1, · · · , aw,p)T and av = (av,1, · · · , av,p)T with the formula:

K(aw, av) = exp

(
− 1

2ρ2
‖aw − av‖2

)
(13)

where ρ > 0 is the bandwidth of K.
We define η as a function of multi-sensor models such as η(aw), w = 1, . . . , L, equals +1 if aw

is a non-boiling multi-sensor model and -1 otherwise and α∗ the vector of dimension L solution
of the following optimization problem (see (Flecther, 2009) for more details):

max
α

L∑
w=1

αw −
1

2

L∑
w,v=1

αwαvη(aw)η(av)K(aw, av)

subject to
L∑

w=1

αwη(aw) = 0

0 ≤ αw ≤ C, w = 1, . . . , L

(14)

where C is a regularization constant for outliers. Let b∗ calculated with the following formula:

b∗ =
1

L

L∑
w=1

(
η(aw)−

L∑
v=1

α∗
vη(av)K(aw, av)

)

Detection process The diagnosis with AR and SVM (AR-SVM) can be summarized as:

Algorithm 2 Diagnosis with AR-SVM
Input: a time window signal sw

1. Calculate the AR models corresponding to sw using (3).

2. Calculate the multi-sensor model aw associated to sw.

3. Calculate the feature f(aw) =

L∑
v=1

α∗
vη(av)K(av, aw) + b∗

4. aw is a boiling model if f(aw) < 0 and is a non-boiling model otherwise.

In our work, the SVM method was implemented using the MATLAB toolbox developed in
(Loosli et al., 2004).

4 Results on the experimental data

4.1 Determination of the appropriate AR order and time windows duration

One of the main points in the AR process is to choose two correct orders p1 and p2 for the AR
on the sensors 1 and 2 and also a correct duration l for the windows.
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In order to determine a correct value for the AR order p1, we first setted l to 20 ms and
then looked for the value of p1 that minimizes the mean value of Akaike’s Information Criterion
for Finite samples (AICF) (Mahmood, 2007). For a given signal divided into W time windows
signals s1w ∈ RN×1 (w = 1, . . . ,W ), the mean AICF is calculated as follows:

AICF (p1) =
1

W

W∑
w=1

ln

 1

N − p1

L∑
k=p1+1

(
s1w[k] + (a1sw)T (s1w)[k−pr,k−1]

)2+
2p1

L− 2p1
(15)

An example of variation of the mean AICF for values of p1 varying from 1 upto 100 is shown on
the figure 8.

Figure 8: Example of variation of the mean AICF computed on 1000 windows of 20 ms according
to AR order p1 for the sensor 1

It can be seen on the figure 8 that the mean AICF decreases as p1 increases. Particularly
when p1 varies from 1 to 10, the decrease is very quick. So any AR order greater than 10 can be
used for the sensor 1. Here we have decided to take p1 = 12. This value was chosen because no
appreciable reduction of the AICF values are observed for higher model orders. We also set the
AR order on the sensor 2 to p2 = 12 which implies that the total number of components for any
multi-sensor model is p = 24.

In order to apply the algorithm for real-time detection, it is necessary that the size l of the
sliding window should be between 10 and 200 milliseconds. The figure 9 shows an example of
variation of the AICF for different values of l.

It can be seen that the AICF decreases as l increases. Any l greater than 60 could be used
and we have decided to take l = 100 milliseconds for both sensors.

The AR model estimation assumes that the background signal is stationary. In this work,
there is not only one AR model estimated but there are many models estimated each on sliding
windows of 100 ms duration. And the assumption of the background noise to be stationary is
made on each of these background noises of 100 ms. On a 100 ms time interval it is possible
to assume that the environment conditions of the power plant do not change and also that the
system is stationary. However, on longer time intervals these conditions can change.
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Figure 9: Example of evolution of the AICF for different values of the duration l of windows

4.2 Boiling Detection based on AR and LR

4.2.1 Validity of the model

In the study, seven operating parameters are considered (d = 7) that leads to a value of
det
(
XTX

)
greater than 1054. Unfortunately, the XTX matrix is ill-conditioned since its 2-

norm condition number is 5.0835 × 108 which is very great. An estimate of the correlation
matrix of the environment parameters is given by:

Σ =



1.00
0.66 1.00
0.90 0.92 1.00
0.72 0.12 0.44 1.00
0.84 0.22 0.57 0.75 1.00
0.99 0.67 0.90 0.67 0.84 1.00
0.78 0.76 0.85 0.46 0.55 0.78 1.00


where the environment parameters are in the order of the table 1. It can be seen that there are
many almost perfect correlations between the environment parameters. In order to cancel the
correlation, we perform a Principal Components Analysis (PCA) which is a dimension reduction
technique consisting in finding linear combinations of the environment parameters such as the
maximum variance possible is retained (see (Saporta, 2006; Dunteman, 1989)). As the units of
the environment parameters are different, a correlation PCA is performed. We have chosen the
first two components of the PCA for 92% of variance explained. Now we use these first two
components as descriptors and we get about 5.5 as 2-norm condition number. This latter is a
more acceptable value.

The maximum value of the Cook distances for each of the learning multi-sensor AR models
is lower than 0.0022. That implies that none of the models of the learning dataset does influence
significantly the values of the LR coefficients which means that our LR model is valid.
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4.2.2 Example of Boiling detection

Detection with AR-LR algorithm (algorithm 1) is performed on one single signal of duration 20
seconds recorded by sensors 1 and 2. Film boiling (stage four of boiling) is injected at t = 7
seconds. The SNR is 3.5 dB. The output signal is divided into 200 windows signals of 100
milliseconds. Then the multi-sensor AR models corresponding to each window are calculated
(i.e. twelve AR coefficients are evaluated for each time window signal and for each of the two
sensors). For one of the 24 components of the sliding window AR multi-sensor model, say the
i− th component, the consecutive values for the 200 windows can be represented by a vector ai
of 200 values. Figure 10 shows the variation (the plot of the 200 consecutive values) of each of
the AR coefficients in time domain for the selected signal.

From the figure 10 it is noticed that, most of the AR coefficients (18 out of 24) follow a sudden
change in their values around t = 7 seconds. But their values remain in the prevision interval
except for the coefficients a10 and a11 for each sensor. It confirms that the boiling phenomenon
causes a disturbance to the values of some AR coefficients.

We introduce the boiling detection state as the main figure to be monitored for boiling de-
tection in a signal. It is equal to 1 if the multi-sensor AR model corresponding to the sliding
window is detected as boiling model and 0 otherwise. The boiling detection state corresponding
to the selected signal of the figure 10 is shown on figure 11. The MNOC is equal to 2 i.e. the
boiling state is equal to 1 if there are more than 2 components out of their prevision intervals and
is zero otherwise. It can be seen that onset of boiling is clearly detected around t = 7 seconds.

4.2.3 False detection rates

False detection rate is defined as the rate of time windows detected as boiling windows when
there is no boiling at all. In this study, after dividing all the records of the background noise
set, we obtain 33 560 windows of 100 ms (in normal functioning) which are divided in two sets:
16 780 for learning and 16 780 for test. The false detection rates (also known as false alarm
rates) corresponding to α = 0.1% (99.9% confidence for the prevision intervals) and α = 0.01%
(99.99% of confidence) are given in the tables 2 and 3.

Table 2: False detection rates (in %) on the 16 780 test windows with a 99.9% confidence (risk
α = 0.1%) for the prevision intervals.

MNOC 5 4 3 2 1 0

Rates 0.01 0.02 0.08 0.86 5.77 8.97

Table 3: False detection rates (in %) on the 16 780 test windows with a 99.99% confidence (risk
α = 0.01%) for the prevision intervals

MNOC 5 4 3 2 1 0

Rates 0.00 0.00 0.00 0.01 0.44 4.41

The false detection rates increases as the MNOC decreases. Indeed, MNOC can be seen as
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(a) Example of unchanged evolution: coefficients a1 (sensor 1) and a8 (sensor 2).

(b) Example of coefficients whose values are clearly disturbed around 7 seconds but remain in their
prevision intervals: coefficients a2 to a9 and a12 for sensor 1; coefficients a1 to a7, a9 and a12 for sensor
2.

(c) Example of coefficients whose values are out of their prevision intervals: coefficients a10 and a11 for
both sensors 1 and 2.

Figure 10: Time domain variation of the components of the sliding multi-sensor AR model with
SNR = 3.5 dB: the lower and the upper bounds of the prevision intervals are in dotted line, the
true values are in continued line.

a level of freedom given to the multi-sensors models. For both values of the risk α, for MNOC
greater than 5, the false detection rate is zero. It means that all the 16 780 models of the test set
have at least 19 components present in their prevision intervals. It seems that the value MNOC
= 0 (no outlier coefficient allowed) is not too good because of the high rates of false alarms
compared to the rates of the other values of MNOC. Except for MNOC= 0, the false detection
rates presented in tables 2 and 3 are very low and almost zero, which means that most of the time
the real values of the components of the AR models are present in their respective confidence
intervals. Most importantly, it means that the models are not disturbed by a change in the
operating mode as the test set contains windows with different operating modes. As expected,
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Figure 11: Boiling detection state for the selected signal containing film boiling from 7 seconds.
The SNR is 3.5 dB and the MNOC is equal to 2. The boiling detection state equals 1 if boiling
is detected in the sliding window and 0 otherwise.

the false alarm rate is lower when the chosen risk is lower.

4.2.4 Detection rates

We define the detection rate as the rate of windows detected as boiling windows when there
is boiling. For a given value of SNR, boiling has been injected in each of the 33 560 normal
functioning time windows from t = 0. Afterwards, algorithm 1 was applied on each of the 33 560
windows. The detection rates are almost the same for each type of boiling. Those corresponding
to film boiling are presented in tables 4 (for a risk α = 0.1%) and 5 (for a risk α = 0.1%).

Table 4: Detection rates (in %) for 99.9% confidence (risk α = 0.1%) for the prevision intervals
and for film boiling.

SNR MNOC
8 7 6 5 4 3 2 1 0

-19 1.6 3.8 4.02 4.71 29.9 54.4 78.4 83.0 88.7
-12 0.1 9.5 35.8 52.7 73.8 84.9 88.7 92.7 95.5
-7 0.4 20.7 52.8 71.4 80.0 91.7 93.0 97.9 99.9
-3.5 0.6 16.3 63.0 74.7 83.3 92.7 94.7 99.5 100.0
0 0.1 4.8 62.3 74.6 82.5 92.9 97.6 99.9 100.0
3.5 0.0 0.1 48.0 68.7 78.9 95.0 99.4 99.9 100.0
7 0.0 0.0 1.5 16.2 77.6 97.7 99.9 100.0 100.0
12 0.0 0.0 0.0 10.7 59.0 98.1 100.0 100.0 100.0
19 0.0 0.0 0.0 9.5 76.2 99.9 100.0 100.0 100.0
40 0.0 0.0 0.0 14.5 86.2 100.0 100.0 100.0 100.0

The detection rates increases as MNOC decreases. For MNOC = 1, 2 or 3, the detection
rate increases as the SNR increases and is always very close to 100%. Which means good boiling
detection. As expected, these detection rates corresponding to α = 0.01% are much lower than
those of α = 0.1% because when the risk α decreases, the amplitude of the confidence intervals
increases and there is much less detection of outliers coefficients.

One critical issue is to find an optimal value for MNOC. Indeed, a low MNOC (say 0 or 1)
leads to a high false alarm rates and a high detection rate while a high MNOC leads to an almost
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Table 5: Detection rates (in %) for 99.99% confidence (α = 0.01%) for the prevision intervals
and for film boiling. The SNR is given in dB.

SNR MNOC
8 7 6 5 4 3 2 1 0

-19 0.0 0.0 0.2 1.9 26.6 42.2 68.2 74.6 82.7
-12 0.0 0.0 1.7 9.6 40.0 78.1 84.4 92.6 93.1
-7 0.0 0.0 3.3 52.2 56.0 87.3 91.3 93.2 97.4
-3.5 0.0 0.0 4.6 54.5 64.7 92.5 92.7 97.5 100.0
0 0.0 0.0 0.3 53.6 64.3 92.5 94.7 99.0 100.0
3.5 0.0 0.0 0.0 14.7 44.2 92.6 97.3 100.0 100.0
7 0.0 0.0 0.0 0.2 2.1 91.7 96.7 100.0 100.0
12 0.0 0.0 0.0 0.0 0.1 88.5 99.3 100.0 100.0
19 0.0 0.0 0.0 0.0 0.4 89.4 99.9 100.0 100.0
40 0.0 0.0 0.0 0.0 35.5 99.8 100.0 100.0 100.0

zero value for the false alarm rates but also to a low detection rate. To choose the optimal value
of MNOC, we look for the MNOC between 0 and 5 that maximizes detection rate and minimizes
false alarms rate. This is equivalent to maximizing the feature function: detection rate − false
alarms rate. We calculate the mean detection rates per column of tables 4 and 5 and we deduce
respectively the false alarms rates given by tables 2 and 3.

Table 6: Values of the feature function (detection rate − false alarms rate) for MNOC between
0 and 5 and the risk α = 0.1%.

MNOC 5 4 3 2 1 0
Feature function 39.8 72.8 90.7 94.4 91.5 89.5

Table 7: Values of the feature function (detection rate − false alarms rate) for MNOC between
0 and 5 and the risk α = 0.01%.

MNOC 5 4 3 2 1 0
Feature function 18.7 33.4 85.5 92.5 95.2 92.9

We propose as optimal values: MNOC = 2 with the risk α = 0.1% and MNOC = 1 with the
risk α = 0.01%.

4.3 Boiling Detection by AR and SVM

For different values of the SNR, we have applied the algorithm 2 (AR-SVM). The non-boiling
set is composed of 33 560 non-boiling multi-sensors models. For a given value of the SNR and
after injection of boiling from t = 0 second in these non-boiling windows, we finally get a set of
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67 120 multi-sensor models. The set is then divided into learning set (50%) and test set (50%).
The results of the classification on the test set are almost the same for each of the four types
of boiling. Those corresponding to film boiling are presented in table 8. True Negative (TN)
corresponds to the models classified as non-boiling when there is no boiling at all, False Negative
(FN) corresponds to the models classified as non-boiling when there is boiling actually, False
Positive (FP) corresponds to the models classified as boiling when there is no boiling and True
Positive (TP) corresponds to the models classified as boiling when there is really boiling. The
False Alarm Rate (FAR) is calculated as the ratio of FP to the total number of non-boiling
models in the test set (i.e. 16780) and the Detection Rate is calculated as the ratio of TP to the
total number of boiling models in the test set (i.e. 16780). Error is calculated as the ratio of
misclassified models to the total number of models (33560).

Table 8: Results of the SVM classifier on the test data. The boiling models correspond to
injection of film boiling. The SNR is given in dB.

SNR TN FN FP TP Error FAR DR
-19 16773 12 7 16768 0.06% 0.0004% 99.93 %
-12 16779 3 1 16777 0.01% 0.00005% 99.98%
-7 16779 0 1 16780 0.003% 0.003% 100%
-3.5 16780 0 0 16780 0% 0% 100%
0 16780 0 0 16780 0% 0% 100%
3.5 16780 0 0 16780 0% 0% 100%
7 16780 0 0 16780 0% 0% 100%
12 16780 0 0 16780 0% 0% 100%
19 16780 0 0 16780 0% 0% 100%
40 16780 0 0 16780 0% 0% 100%

The multi-sensor models can be considered as elements of R24. To view them, we performed
a Covariance Principal Components Analysis (PCA) on the 33 560 multi-sensor models in non-
boiling conditions afterwards the projections of the 33 560 boiling multi-sensor models in the
principal plan of the PCA (the first two components) are calculated and shown in the figure 12
for increasing values of the SNR. It can be seen that with the increase of the SNR, the boiling
multi-sensor models cluster at one point which means a better classification and thus a better
boiling detection.

5 Conclusion

In this work, we have presented new approaches for acoustic monitoring of a liquid metal fast
breeder reactor as far as the sodium boiling detection is concerned. The proposed method is
based on the estimation of AR model parameters on a sliding window. Afterwards, the boiling
detection is done by LR and SVM methods. The LR uses an off-line estimated normal model
of background noises in non-boiling condition and detects a fault if the current estimated model
deviates from the normal model. The SVM starts with off-line classification of boiling and
non-boiling background noises models into two different classes and online supervision is done
by classifying the current estimated model into one of the classes. In order to avoid wrong
detections due to operating modes changing, their parameters are taken into account in the
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Figure 12: Projection of boiling multi-sensor models in the principal plan of PCA performed on
non-boiling models only: non-boiling models are in blue and boiling models are in red. The first
two principal components explain 73.68% of the total variance.

detection method. The results of the proposed method applied to the test data prove that
boiling phenomenon introduces disturbance in the values of the AR models (or coefficients) than
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can be clearly detected. The high detection rates as well as the low false alarms rates obtained
on the test data show that our proposed approach is successful even for negative values of the
Signal to Noise Ratio. Most importantly, the proposed method is not sensible to the change
of LMFBR operating mode. In order to obtain more representative acoustic signals, work for
characterization of the acoustic signature of the liquid sodium boiling noise corresponding to
core accidents is in progress. Further work will also consider definition of a parametric distance
to reduce the number of AR coefficients to be monitored in the AR combined to linear regression
detection method.
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