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by Humphrey [32], who, more recently [33], has conducted a comparative study of
a small number of constitutive models used in the literature to describe the mechan-
ical response of arteries. One important motivation for such studies is the belief that
mechanical factors may be important in triggering the onset of atherosclerosis, the
major cause of human mortality in the western world. In order to fully understand
these mechanical influences it is necessary to have reliable constitutive models for
the artery. Moreover, several clinical treatments, such as percutaneous transluminal
angioplasty [3] can only be studied in detail if a reliable constitutive model of the
arterial wall is available.

In vivo the artery is a pre-stretched material under an internal pressure load and
it is essential to use a theory which takes account of the resulting finite deformation.
The aim of this paper is therefore to provide a systematic study of the mechanical
properties of arteries based on the continuum theory of large deformation elasticity.
We begin, in Section 2, by giving a brief description of the histological structure of
arterial walls, a summary of the main deformation geometries used in the experi-
mental determination of the mechanical properties of arteries and an outline of the
general characteristics of the mechanical response of arteries. It is emphasized that
the vast majority of constitutive models used in the literature are phenomenological
in nature and do not take account directly of the histological structure.

In Section 3 we summarize the theoretical framework to be used as the back-
ground for the description of the arterial mechanics. This consists of the general
equations governing the elastic response of an anisotropic material based on the
use of an elastic free-energy function. The equations are then specialized in order
to consider the circular cylindrical geometry appropriate for the analysis of exten-
sion, inflation and torsion of an artery, which is treated as a thick-walled circular
cylinder. In the absence of the applied loading, it should be emphasized, an artery
is not stress free since if cut along a radius it will spring open to form an open
sector. In this paper, for simplicity and in order to produce a distribution of residual
stress in the unloaded configuration, we assume that the opened-up configuration
is unstressed, although it is known that in general such a configuration is not un-
stressed (see, for example, Vossoughi et al. [64]). In general, there may also be
residual stresses in the axial direction, but we do not allow for these in the present
work. The assumed stress-free configuration is taken to correspond to an open
sector of a circular cylindrical tube and is designated as the reference configuration
of the material. The stressed but unloaded circular cylindrical shape is recovered
by application of an initial bending deformation. Thus, the overall deformation
from the reference configuration consists of bending, axial extension, inflation and
torsion. This provides a composite deformation of sufficient generality to allow a
comparative judgement of the predictions of different material models to be made.

In Section 4 a range of both two- and three-dimensional phenomenological
models adopted in the literature for the study of elastic arteries is examined on
the basis of the theory in Section 3 from a comparative point of view. Their perfor-
mance is assessed critically against a number of criteria, and certain deficiencies
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of the models are highlighted. Some anisotropic models are able to provide a full
three-dimensional description of the state of stress in an artery, but at the expense
of incorporation of a large number of material constants, which may lead to para-
meter identification problems. On the other hand, oversimplification through use
of isotropy, as in Delfino et al. [10], is also evident. Several models, including
that in Fung et al. [18], are based on formulations which may be associated with
geometrical simplifications (for example, the membrane approximation) and are
not suitable for analysis of the through-thickness stress distribution in an artery or
for the treatment of shearing deformations. They can, however, be used to simulate
the deformation in special cases, such as that corresponding to axial extension and
inflation of an artery regarded as a thin-walled (or thick-walled) circular cylindrical
tube. An approach which uses the incremental elastic moduli is also found in the
literature (for some examples see the data book [1] edited by Abé et al.) but is
not discussed here since it is inappropriate for the finite deformation analysis with
which we are concerned.

One problem which arises in making comparisons is that each different model in
the literature is based on data from a different artery (and generally from different
animals). Nevertheless, we carry out a systematic and detailed evaluation of several
of the most commonly used models in respect of combined extension, inflation and
torsion of a thick-walled tube and with residual stresses incorporated. Moreover, a
certain convexity property is introduced and checked for each model to provide an
indication of its mechanical, mathematical and computational efficacy.

This provides the background for the introduction, in Section 5, of a new model
which aims to circumvent the difficulties encountered with some other models.
Specifically, the new model takes account of the architecture of the arterial wall.
The artery is treated as a two-layer thick-walled tube, the two layers representing
the media (the middle layer of the artery) and the adventitia (the outer layer). These
are the main (solid) mechanically relevant components in healthy arteries. Thus, a
third layer (the intima) is disregarded in this work, although it is not difficult to
account for this on a similar basis as for the other layers if the need arises, which
would be the case for arteries subject to pathological intimal change.

Each layer is composed of a non-collagenous matrix, which is treated as an
isotropic material, and two families of collagen fibers helically wound along the
arterial axis and symmetrically disposed with respect to the axis (but with dif-
ferent orientations in the two layers). These fibers induce the anisotropy in the
mechanical response such that the overall response of each layer is orthotropic
and is accounted for by the constitutive theory of fiber-reinforced solids. Their
contribution to the strain energy is modeled using a pair of preferred directions
identified in the reference configuration, and from which structure tensors char-
acterizing the anisotropy are formed. The model is structural in the sense that it
involves two layers and within each layer information about the orientations of the
collagen fibers, obtained from a statistical analysis of histological sections of each
arterial layer (see Holzapfel et al. [27]), is incorporated. The material parameters
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included in the model, although phenomenologically based, reflect the structural
characteristics within each arterial layer. The properties of the matrix material are
described in terms of a single material constant and those of the fiber bundles by
two additional constants in each layer.

With a specific form of the model used for illustrative purposes, the predic-
tions of the model are examined in detail and compared with those from some
phenomenological models. The predictions of the model agree well with the typ-
ical mechanical response of arteries observed in experiments. The Cauchy stress
distributions through the deformed arterial wall in the physiological state are also
determined in order to illustrate the significant difference made by incorporation
of the residual stresses. Moreover, the three-dimensional model introduced here is
consistent with the convexity requirements that ensure mechanically and mathe-
matically reliable behavior. It also admits an efficient numerical implementation
within the finite element method, an aspect which is discussed in detail in [26], in
which there is an extension to viscoelasticity (suitable for the modeling of muscular
arteries). Extension to elastoplasticity is discussed in [20] and [21]. Thus, more
complex boundary-value problems, possibly of clinical relevance, can be solved
on the basis of the proposed model.

Section 6 contains a summary of the results and concludes with an assessment
of the advantages of the new model.

2. Histology and Typical Mechanical Behavior of Arterial Walls

Efficient constitutive descriptions of arterial walls require a fundamental knowl-
edge and understanding of the entire arterial histology, i.e. the morphological struc-
ture, and an extensive investigation of the particular arterial wall of interest. Ad-
ditionally, this is of crucial importance for the understanding of the general me-
chanical characteristics of arterial walls and the components that provide the main
contributions to the deformation process.

This brief overview is included only for the purpose of clarifying the macro-
scopic and microscopic structure of arterial walls and to provide essential infor-
mation for scientists without a background in biology or physiology. For a more
detailed exposition of the different mechanical characteristics of the interrelated
arterial components and the overall functioning of the blood vessel (which consti-
tutive models aim to characterize) see, for example, the reviews by Rhodin [48]
and Silver et al. [54].

2.1. ARTERIAL HISTOLOGY

This paper is concerned with the in vitro passive behavior of arteries. Hence, in
vivo effects such as the vasa vasorum, nerve control, humoral control, perivascular
connective tissue, etc. and neighboring organs such as the pulsating heart are not
relevant and are not therefore discussed here.
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Figure 1. Diagrammatic model of the major components of a healthy elastic artery composed
of three layers: intima (I), media (M), adventitia (A). I is the innermost layer consisting of a
single layer of endothelial cells that rests on a thin basal membrane and a subendothelial layer
whose thickness varies with topography, age and disease. M is composed of smooth muscle
cells, a network of elastic and collagen fibrils and elastic laminae which separate M into a
number of fiber-reinforced layers. The primary constituents of A are thick bundles of collagen
fibrils arranged in helical structures; A is the outermost layer surrounded by loose connective
tissue.

In general, arteries are roughly subdivided into two types: elastic and muscular.
Elastic arteries have relatively large diameters and are located close to the heart (for
example, the aorta and the carotid and iliac arteries), while muscular arteries are
located at the periphery (for example, femoral, celiac, cerebral arteries). However,
some arteries exhibit morphological structures of both types. Here we focus atten-
tion on the microscopic structure of arterial walls composed of three distinct layers,
the intima (tunica intima), the media (tunica media) and the adventitia (tunica
externa). We discuss the constituents of arterial walls from the mechanical per-
spective and emphasize those aspects which are important to researchers interested
in constitutive issues. Figure 1 shows a model of a healthy elastic artery.
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2.1.1. Intima

The intima is the innermost layer of the artery. It consists of a single layer of
endothelial cells lining the arterial wall and resting on a thin basal membrane
(basal lamina). There is also a subendothelial layer whose thickness varies with
topography, age and disease. In healthy young muscular arteries, however, the
subendothelial layer is almost non-existent. In healthy young individuals the in-
tima is very thin and makes an insignificant contribution to the solid mechanical
properties of the arterial wall. However, it should be noted that the intima thickens
and stiffens with age (arteriosclerosis) so that the mechanical contribution may
become significant.

It is known that pathological changes of the intimal components may be asso-
ciated with atherosclerosis, the most common disease of arterial walls. It involves
deposition of fatty substances, calcium, collagen fibers, cellular waste products and
fibrin (a clotting material in the blood). The resulting build-up is called atheroscle-
rotic plaque. It may be very complex in geometry and biochemical composition. In
later stages the media is also affected. These pathological changes are associated
with significant alterations in the mechanical properties of the arterial wall. Hence,
the mechanical behavior of atherosclerotic arteries differs significantly from that
of healthy arteries.

2.1.2. Media

The media is the middle layer of the artery and consists of a complex three-dimen-
sional network of smooth muscle cells, and elastin and collagen fibrils. According
to [48] the fenestrated elastic laminae separate the media into a varying number of
well-defined concentrically fiber-reinforced medial layers. The number of elastic
laminae decreases toward the periphery (as the size of the vessels decreases) so
that elastic laminae are hardly present in muscular arteries.

The media is separated from the intima and adventitia by the so-called internal
elastic lamina and external elastic lamina (absent in cerebral blood vessels), respec-
tively. In muscular arteries these laminae appear as prominent structures, whereas
in elastic arteries they are hardly distinguishable from the regular elastic lami-
nae. The orientation of and close interconnection between the elastic and collagen
fibrils, elastic laminae, and smooth muscle cells together constitute a continuous
fibrous helix (Faserschraube) [52, 58]. The helix has a small pitch so that the fibrils
in the media are almost circumferentially oriented. This structured arrangement
gives the media high strength, resilience and the ability to resist loads in both the
longitudinal and circumferential directions. From the mechanical perspective, the
media is the most significant layer in a healthy artery.

2.1.3. Adventitia

The adventitia is the outermost layer of the artery and consists mainly of fibrob-
lasts and fibrocytes (cells that produce collagen and elastin), histological ground
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substance and thick bundles of collagen fibrils forming a fibrous tissue. The adven-
titia is surrounded continuously by loose connective tissue. The thickness of the
adventitia depends strongly on the type (elastic or muscular) and the physiological
function of the blood vessel and its topographical site. For example, in cerebral
blood vessels there is virtually no adventitia.

The wavy collagen fibrils are arranged in helical structures and serve to rein-
force the wall. They contribute significantly to the stability and strength of the
arterial wall. The adventitia is much less stiff in the load-free configuration and
at low pressures than the media. However, at higher levels of pressure the col-
lagen fibers reach their straightened lengths and the adventitia changes to a stiff
‘jacket-like’ tube which prevents the artery from overstretch and rupture.

2.2. TYPICAL MECHANICAL BEHAVIOR OF ARTERIAL WALLS

Each constitutive framework and its associated set of material parameters requires
detailed studies of the particular material of interest. Its reliability is strongly re-
lated to the quality and completeness of available experimental data, which may
come from appropriate in vivo tests or from in vitro tests that mimic real loading
conditions in a physiological environment.

In vivo tests seem to be preferable because the vessel is observed under real life
conditions. However, in vivo tests have major limitations because of, for example,
the influence of hormones and nerval control. Moreover, data sets from the com-
plex material response of arterial walls subject to simultaneous cyclic inflation,
axial extension and twist can only be measured in an in vitro experiment. Only
with such data sets can the anisotropic mechanical behavior of arterial walls be
described completely. In addition, in in vitro experiments the contraction state
(active or passive) of the muscular media has to be determined. This can be done
with appropriate chemical agents.

For pure inflation tests of straight artery tubes, which is the most common
two-dimensional test, see the early work [2] (in which shear deformations are not
considered). Since arteries do not change their volume within the physiological
range of deformation [4], they can be regarded as incompressible materials. Hence,
by means of the incompressibility constraint we may determine the mechanical
properties of three-dimensional specimens from two-dimensional tests [36]. It is
important to note that uniaxial extension tests on arterial patches (strips) provide
basic information about the material [24] but they are certainly not sufficient to
quantify completely the anisotropic behavior of arterial walls. Other uniaxial ex-
tension tests on small arterial rings (so-called ring tests) are also insufficient [9].
In general, a segment of vessel shortens on removal from the body, as was first
reported in [15]. The in vivo pre-stretch in the longitudinal direction must therefore
be reproduced within in vitro tests [37].

Each non-axisymmetric arterial segment (such as a bifurcation or a segment
with sclerotic changes) under combined inflation and axial extension develops
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significant shear stresses in the wall. Hence, in order to characterize the shear
properties of arterial walls shear tests are required. In shear tests either the angle
of twist of an arterial tube subjected to transmural pressure, longitudinal force and
torque [12] or the shear deformation of a rectangular arterial wall specimen sub-
jected to shear forces [65] is measured. Additionally, one can classify mechanical
tests according to the strain rates used (quasi-static or dynamic) and to whether
the loading is performed cyclically or discontinuously (creep and relaxation tests).
It has been known for many years that the load-free configuration of an artery is
not a stress-free state [61]. In general, a load-free arterial ring contains residual
stresses. It is of crucial importance to identify these in order to predict reliably the
state of stress in an arterial wall, and this has been the aim of many experimental
investigations (see, for example, the bending tests on blood vessel walls in [68]).

The mechanical behavior of arteries depends on physical and chemical environ-
mental factors, such as temperature, osmotic pressure, pH, partial pressure of car-
bon dioxide and oxygen, ionic concentrations and monosaccharide concentration.
In ex vivo conditions the mechanical properties are altered due to biological degra-
dation. Therefore, arteries should be tested in appropriate oxygenated, temperature
controlled salt solutions as fresh as possible. For an overview of experimental test
methods used to verify material parameters, see [32] and the references contained
therein.

As indicated in Section 2.1 the composition of arterial walls varies along the
arterial tree. Hence, there seems to be a systematic dependence of the shape of
the stress–strain curve for a blood vessel on its anatomical site. This fact has been
demonstrated several times experimentally; see, for example, the early works [51,
37] and [8]. Although the mechanical properties of arterial walls vary along the
arterial tree, the general mechanical characteristics exhibited by arterial walls are
the same. In order to explain the typical stress–strain response of an arterial wall
of smooth muscles in the passive state (governed mainly by elastin and collagen
fibers), we refer to Figure 2. Note that the curves in Figure 2 are schematic, but
based on experimental tension tests performed in the authors’ laboratory (some of
which is described in a recent paper [28]).

As can be seen, a circumferential strip of the media subjected to uniaxial cyclic
loading and unloading typically displays pronounced stress softening, which oc-
curs during the first few load cycles. The stress softening effect diminishes with
the number of load cycles until the material exhibits a nearly repeatable cyclic
behavior, and hence the biological material is said to be ‘pre-conditioned’ (compare
with, for example, the characteristic passive behavior of a bovine coronary artery in
[32], p. 33). Thus, depending on the type of artery considered, the material behavior
may be regarded as (perfectly) elastic for proximal arteries of the elastic type, or
viscoelastic for distal arteries of the muscular type, often modeled as pseudoelastic
(see, for example, [18]). For a definition of the term pseudoelasticity in the context
of biomechanics the reader is referred to [18].
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Figure 2. Schematic diagram of typical uniaxial stress–strain curves for circumferential ar-
terial strips (from the media) in passive condition (based on tension tests performed in the
authors’ laboratory): cyclic loading and unloading, associated with stress softening effects,
lead to a pre-conditioned material which behaves (perfectly) elastically or viscoelastically
(nearly repeatable cyclic behavior) – point I. Loading beyond the (visco)elastic domain up
to point II leads to inelastic deformations. Additional loading and unloading cycles display
stress softening again until point III is reached. Then the material exhibits (perfectly) elastic
or viscoelastic response. The thick solid line indicates the (approximate) engineering response
of the material.

Healthy arteries are highly deformable composite structures and show a non-
linear stress–strain response with a typical (exponential) stiffening effect at higher
pressures, as illustrated in Figure 2. This stiffening effect, common to all biological
tissues, is based on the recruitment of the embedded (load carrying) wavy collagen
fibrils, which leads to the characteristic anisotropic mechanical behavior of arter-
ies; see the classical works [49, 40]. Early works on arterial anisotropy (see, for
example, [45]) considered arterial walls to be cylindrically orthotropic, which is
generally accepted in the literature.

Loading beyond the (visco)elastic domain (indicated by point I in Figure 2),
far outside the physiological range of deformation, often occurs during mechanical
treatments such as percutaneous transluminal angioplasty. This procedure involves
dilation of an artery using a balloon catheter (see [3]). In the strain range up to
point II in Figure 2, the deformation process in an arterial layer is associated with
inelastic effects (elastoplastic and/or damage mechanisms) leading to significant
changes in the mechanical behavior (see [44, 28] and [21]). This overstretching
involves dissipation, which is represented by the area between the loading and
unloading curves. Hence, starting from point II, additional cyclic loading and un-
loading again displays stress softening, which diminishes with the number of load
cycles. At point III the material exhibits a (perfectly) elastic or viscoelastic behav-
ior. However, unloading initiated from point III returns the arterial (medial) strip to
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an unstressed state with non-vanishing strains remaining, these being responsible
for the change of shape. With preconditioning effects neglected, the thick solid line
in Figure 2 indicates the (approximate) engineering response associated with the
actual physical behavior.

The model proposed in Section 5 is intended to capture only the elastic portion
of the curves in Figure 2, i.e. up to point I. For the remaining portions of the curves
a rate-independent elastoplastic model and the associated algorithmic formulation
and finite element implementation was recently proposed in [20].

3. Continuum-Mechanical Framework

In this section we summarize the equations that provide the general continuum
description of the deformation and the hyperelastic stress response of the mater-
ial. As a basis for reporting the performance of different constitutive models for
arteries we consider the mechanical response of a thick-walled circular cylindrical
tube under various boundary loads. We specify the strain measures to be used and
discuss the equilibrium equation which arises in the considered problem. We also
give expressions for the torsional couple and the reduced axial force acting on
the tube, these being crucial for the subsequent comparative study of constitutive
models.

3.1. FINITE HYPERELASTICITY

3.1.1. Description of the Deformation

Let �0 be a (fixed) reference configuration of the continuous body of interest (as-
sumed to be stress-free). We use the notation χ : �0 → R

3 for the deformation,
which transforms a typical material point X ∈ �0 to a position x = χ(X) ∈ �

in the deformed configuration, denoted �. Further, let F(X) = ∂χ(X)/∂X be the
deformation gradient and J (X) = det F > 0 the local volume ratio.

Following [14] and [41], we consider the multiplicative decomposition

F = (J 1/3I)F (1)

of F into spherical (dilatational) and unimodular (distortional) parts. We use the
right and left Cauchy–Green tensors, denoted C and b respectively, and their mod-
ified counterparts, denoted C and b respectively, associated with F. From equa-
tion (1) we then have

C = FTF = J 2/3C, C = F
T
F, (2)

b = FFT = J 2/3b, b = F F
T
. (3)

In addition, we introduce the Green–Lagrange strain tensor E, and, through equa-
tion (1), its associated modified strain measure E. Thus,

E = 1

2
(C − I) = J 2/3E + 1

2
(J 2/3 − 1)I, E = 1

2
(C − I), (4)

where I denotes the second-order unit tensor.
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3.1.2. Hyperelastic Stress Response

In order to describe the hyperelastic stress response of arterial walls, we employ
a set {Aα | α = 1, . . . , n} of (second-order) tensors which characterize the wall
structure, and we postulate the existence of a Helmholtz free-energy function �(E,

A1, . . . ,An). Subsequently, we assume the decoupled form

�(E,A1, . . . ,An) = U(J ) + �(E,A1, . . . ,An), (5)

where the function U is a purely volumetric contribution and � is a purely iso-
choric contribution to the free energy �.

From the Clausius–Planck inequality, standard arguments lead to the well-known
equation S = ∂�(E,A1, . . . ,An)/∂E for the second Piola–Kirchhoff stress. Equa-
tion (5) then gives

S = Svol + S with Svol = ∂U(J )

∂E
, S = ∂�(E,A1, . . . ,An)

∂E
. (6)

We shall also require the standard results

∂J

∂E
= JC−1 and

∂E
∂E

= J−2/3

(
I − 1

3
C ⊗ C

−1
)

(7)

from tensor analysis (see, for example, [25]), where I denotes the fourth-order iden-
tity tensor which, in index notation, has the form (I)IJKL = (δIKδJL + δILδJK)/2,
δIJ being the Kronecker delta. With these results, equations (6)2 and (6)3 be-
come, after some straightforward tensor manipulations and the introduction of the
hydrostatic pressure p = dU/dJ as in [25],

Svol = pJC−1, S = J−2/3Dev

(
∂�

∂E

)
. (8)

The operator Dev(•) in (8) is defined by

Dev(•) = (•) − 1

3
[(•) : C]C−1

, (9)

and furnishes the physically correct deviatoric operator in the Lagrangian descrip-
tion, so that Dev(•) : C = 0. Note that in the description of an incompressible
material (which an artery is assumed to be) the hydrostatic pressure p becomes an
indeterminate Lagrange multiplier.

A Piola transformation of equations (8) enables the Cauchy stress tensor σ =
J−1FSFT to be put in the decoupled form

σ = σvol + σ with σvol = pI, σ = J−1dev

(
F
∂�

∂E
F

T
)
, (10)

analogously to equation (8), where the operator dev(•) is defined by

dev(•) = (•) − 1

3
[(•) : I]I. (11)
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Figure 3. Arterial ring in the the (stress-free) reference configuration �0, the load-free
configuration �res and the current configuration �.

It furnishes the physically correct deviatoric operator in the Eulerian description,
so that dev(•) : I = 0.

3.2. COMBINED BENDING, INFLATION, EXTENSION AND TORSION OF A TUBE

3.2.1. Basic Kinematics

We consider the artery as an incompressible thick-walled cylindrical tube subjected
to various loads. It is known that the load-free configuration, �res say, in which the
artery is excised from the body and not subjected to any loads is not a stress-free (or
strain-free) reference configuration �0. Thus, the arterial ring springs open when
cut in a radial direction. It appears that Vaishnav and Vossoughi [61] were the first
to publish this finding. Bearing in mind the statement in Section 1, we assume that
the open sector is the undeformed (stress-free and fixed) reference configuration
�0, as depicted in Figure 3.
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Thus, in terms of cylindrical polar coordinates (R,�,Z), the geometrical re-
gion �0 of the tube is defined by

Ri � R � Ro, 0 � � � (2π − α), 0 � Z � L, (12)

where Ri, Ro, α and L denote the inner and outer radii, the opening angle and
length of the undeformed (split) tube, respectively. Note that the opening angle α

identified in Figure 3 differs from the definition normally used (see, for example,
Fung and Liu [19]).

The deformation χ takes �0 into the current configuration �. For the considered
problem χ = χp ◦ χres is the composition of the deformations χres and χp, as
indicated in Figure 3, where χres generates the load-free configuration �res associ-
ated with residual stresses, while χp is associated with inflation, axial elongation
and torsion of the tube, and leads to the final configuration �. It is important to
note that the residually stressed configuration �res of an artery arises from certain
growth mechanisms of the different layers, and hence, in general, the residually
stressed state is more complex than considered here. For discussion of stress-
dependent growth and remodeling we refer to, for example, Rodriguez et al. [50]
and Rachev [46]. It may also be noted that it has been found that residual stress ac-
cumulates due to cyclic loading in two-phase models of soft tissue without growth
(see, for example, Huyghe et al. [34]).

In terms of cylindrical polar coordinates (r, θ, z), the geometry of the deformed
configuration � is given by

ri � r � ro, 0 � θ � 2π, 0 � z � l, (13)

where ri, ro and l denote the inner and outer radii and the length of the deformed
tube, respectively.

The deformation χ , which is taken to be isochoric, may then be written in the
form

χ = rer + zez (14)

with reference to the (unit) basis vectors {er , eθ , ez} associated with the cylindrical
polar coordinates (r, θ, z), where

r =
√

R2 − R2
i

kλz

+ r2
i , θ = k� + Z

�

L
, z = λzZ, (15)

λz is the (constant) axial stretch, the parameter k, defined by k = 2π/(2π − α), is
a convenient measure of the tube opening angle in the unstressed configuration, ri

is the inner radius in the deformed configuration and � is the angle of twist of the
tube arising from the torsion.

In addition to λz, it is convenient to introduce the notations defined by

λr(R) = ∂r

∂R
= R

rkλz

, λθ(R) = r

R

∂θ

∂�
= kr

R
,

γ (R) = r
∂θ

∂z
= r

�

l
. (16)
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Here λr(R), λθ(R) and λz are the principal stretches of the deformation associated
with the radial, circumferential and axial directions when there is no twist, while
γ (R), which is associated with the twist, represents locally the amount of shear in
a (θ, z)-plane. Since each of these quantities depends only on the radius R, the one-
dimensional character of the problem is apparent. When γ �= 0, λr is the principal
stretch in the radial direction but λθ and λz are not then principal stretches. The
condition that the volume is preserved during the deformation is independent of γ

and requires simply that

λrλθλz = 1. (17)

Note that

ri = λθ i
Ri

k
, (18)

where λθ i denotes the value of λθ at the inner surface of the tube.
The first term k� in (15)2 represents the deformation from configuration �0 to

�res while the second term Z�/L describes the influence of the torsion. In terms of
the parameters k, λθ i, λz and �, equations (15), (18) define the combined bending,
inflation, axial extension and torsion of a thick-walled tube.

On use of (17), the deformation gradient F, referred to cylindrical polar coordi-
nates, may be expressed in the form

F = F = (λθλz)
−1er ⊗ ER + λθ eθ ⊗ E� + γ λz eθ ⊗ EZ + λz ez ⊗ EZ, (19)

where {ER,E�,EZ} is the set of unit cylindrical polar basis vectors associated with
(R,�,Z). Note that EZ = ez.

Use of equations (2), (3) enables the Cauchy–Green tensors to be given in terms
of cylindrical polar coordinates. Thus,

C = C = (λθλz)
−2ER ⊗ ER + λ2

θ E� ⊗ E� + λ2
z(1 + γ 2)EZ ⊗ EZ

+ γ λθλz(E� ⊗ EZ + EZ ⊗ E�), (20)

b = b = (λθλz)
−2er ⊗ er + (λ2

θ + γ 2λ2
z)eθ ⊗ eθ + λ2

z ez ⊗ ez

+ γ λ2
z(eθ ⊗ ez + ez ⊗ eθ ). (21)

The deformation gradient (19) and the Cauchy–Green tensors (20) and (21) play
a crucial role in the derivation of the state of stress in an arterial wall. A more
general deformation including azimuthal and axial shear is discussed in the paper
by Guccione et al. [22].

3.2.2. Equilibrium Equations

In the absence of body forces the equilibrium equations are

div σ = 0, (22)
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where div(•) denotes the spatial divergence of the spatial tensor field (•). Note that
in cylindrical polar coordinates (r, θ, z), because of the geometrical and constitu-
tive symmetry, the only non-trivial component of (22) is

dσrr

dr
+ (σrr − σθθ )

r
= 0 (23)

(see, for example, [42]). From this equation and the boundary condition σrr |r=ro =
0 on the outer surface of the tube, the radial Cauchy stress σrr may be calculated as

σrr(ξ) =
∫ ro

ξ

(σrr − σθθ)
dr

r
, ri � ξ � ro. (24)

The internal pressure pi = −σrr |r=ri is then obtained in the form

pi =
∫ ro

ri

(σθθ − σrr)
dr

r
. (25)

This equation plays an important role in the numerical solution of the problem
considered.

When the state of deformation is known, expressions for the axial force N and
the torsional couple Mt can be calculated via the definitions

N = 2π
∫ ro

ri

σzz rdr, Mt = 2π
∫ ro

ri

σθzr
2 dr. (26)

In view of the additive split of the Cauchy stress tensor σ into volumetric and
isochoric parts introduced in (10)1, we may recast equations (25) and (26)2 by
using the decompositions σθθ = p + σ θθ and σrr = p + σ rr to obtain

pi =
∫ ro

ri

(σ θθ − σ rr)
dr

r
, Mt = 2π

∫ ro

ri

σ θzr
2 dr, (27)

where σ θθ , σ rr denote the isochoric parts of the normal components of (Cauchy)
stress in the circumferential and radial directions, while σ θz = σθz is the shear
component of (Cauchy) stress acting tangentially to the cross-section of the tube.

Use of the additive split (10) and equation (24) enables the axial force N in
equation (26)1 to be expressed as

N = 2π
∫ ro

ri

[∫ ξ

ro

(σ θθ − σ rr)
dr

r
− σ rr + σzz

]
ξ dξ. (28)

Reversal of the order of integration in (28) and use of the expression (27)1 leads to
the general formula

F = π

∫ ro

ri

(2σ zz − σ θθ − σ rr)r dr (29)
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for the reduced axial force F = N−r2
i πpi. This expression for F is very important

since it gives precisely the force that is measured during inflation tests on arteries.
A specific form of equation (29) is given in equation (15) of [5]. In subsequent
sections of the present paper equations (27) and (29) will be specialized for several
constitutive models that have been used in the literature to represent the mechanical
response of arteries.

REMARK 3.1. For a thin-walled cylindrical tube we make the simplification
σrr = p + σ rr = 0 for the radial stress (the membrane approximation). On use
of σθθ = p + σ θθ and σ θz = σθz, equations (27)1, (27)2 and (29) then enable
the reduced equations for the internal pressure pi, the torsional couple Mt and the
reduced axial force F to be given simply as

pi = h

r
σθθ , Mt = 2πr2hσθz, F = πrh(2σzz − σθθ ), (30)

where r and h denote the radius and wall thickness of the deformed tube, respec-
tively. It is important to note that with this membrane approximation the con-
tribution χres to the deformation is inadmissible and residual stresses cannot be
included.

REMARK 3.2. Here we describe briefly the numerical technique used in the so-
lution of the problem of bending, axial extension, inflation and torsion of a thick-
walled cylindrical tube.

By assuming a particular state of residual strain (characterized by the parameter
k), the fixed axial stretch λz and fixed angle of twist � of the tube, the isochoric
part of the strain (and hence the stress) can always be expressed in terms of the
two variables λθ i and r, i.e. the circumferential stretch at the inner surface of the
tube and the radius, respectively. Hence, the equation of equilibrium (27)1 may be
written in the general form

pi =
∫ ro

ri

F (λθ i, r)
dr

r
, (31)

where ri is given in terms of λθ i by (18). Since closed-form evaluation of equa-
tion (31) is only possible for very simple constitutive equations, we employ a
Gaussian integration scheme [31], i.e.

pi ≈
n∑

j=1

F (λθ i, rj )
wj

rj
, (32)

where wj and rj (j = 1, . . . , n), denote the weights and the Gaussian points, and
n is the order of integration. Equation (32) is, in general, nonlinear in the single
unknown λθ i, and, for given pi, can be solved for λθ i using, for example, a standard
Newton iteration with the initial value λθ i = 1.0.
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Since the deformation is now determined, the torsional couple Mt and the re-
duced axial force F follow directly from equations (27)2 and (29), respectively.
This computation is carried out by employing another Gaussian integration. It
turns out that for the considered range of deformations a three-point integration
(n = 3) with the accuracy of order five gives sufficiently accurate solutions.

REMARK 3.3. The theory described above is designed to capture the deformation
behavior in the central part of a tube so as to exclude end effects. Therefore, axial
dependence of the deformation is not considered. This reflects the typical setting
used in experiments (see, for example, [18] or [53], amongst others).

4. Some Constitutive Models for Arterial Walls

The active mechanical behavior of arterial walls is governed mainly by the intrinsic
properties of elastin and collagen fibers and by the degree of activation of smooth
muscles. An adequate constitutive model for arteries which incorporates the ac-
tive state (contraction of smooth muscles) was proposed recently by Rachev and
Hayashi [47].

The passive mechanical behavior of arterial walls is quite different and is gov-
erned mainly by the elastin and collagen fibers (see, for example, [8]). The passive
state of the smooth muscles may also contribute to the passive arterial behavior but
the extent of this contribution is not yet known. Most constitutive models proposed
for arteries are valid for the passive state of smooth muscles and are based on a
phenomenological approach which describes the artery as a macroscopic system.
Furthermore, most of these models were designed to capture the response near the
physiological state and in this respect they have been successfully applied in fitting
experimental data. The most common potentials (strain-energy functions) are of
exponential type, although polynomial and logarithmic forms are also used. For a
review of a number of constitutive models describing the overall passive behavior,
see Humphrey [32].

Some of the constitutive models proposed use the biphasic theory to describe
arterial walls as hydrated soft tissues; see, for example, the works by Simon and
co-workers [56, 55]. Less frequently used are models which account for the spe-
cific morphological structure of arterial walls. One attempt to model the helically
wound fibrous structure is provided by Tözeren [60], which is based on the idea
that the only wall constituent is the fiber structure. However, this is a significant
simplification of the histological structure.

Another structural model due to Wuyts et al. [67] assumes that the wavy colla-
gen fibrils are embedded in concentrically arranged elastin/smooth-muscle mem-
branes, which is in agreement with the histological situation [49]. The model in [67]
assumes that the collagen fibrils have a statistically distributed initial length. Each
fibril may be stretched initially with a very low force but thereafter its behavior is



18 GERHARD A. HOLZAPFEL ET AL.

linearly elastic. Only the media is considered as (solid) mechanically relevant. Al-
though the model proposed in [67] attempts to incorporate histological information,
which is a very promising approach, it is only possible to represent the deformation
behavior of axially-symmetric thick-walled vessels. Another drawback is the fact
that the artery is considered as a tube reinforced by circularly oriented collagen and
elastin fibers, which does not model the real histological situation.

Most of the constitutive models treat the arterial wall as a single layer, but
a number of two-layer models have been proposed in the literature. Two-layer
models which include anisotropy are those due to, for example, Von Maltzahn et
al. [38], Demiray [11] and Rachev [46]. However, the emphasis of the latter paper
is on stress-dependent remodeling.

In this section we evaluate and compare some prominent potentials of the ex-
ponential, polynomial and logarithmic type which are often used to characterize
the overall passive behavior of arterial walls. The study aims to illustrate the per-
formance of the potentials and their reliability for the prediction of the state of
deformation. In particular, we use a systematic analysis to examine the inflation
of a cylindrical tube at various axial stretches λz and to compute the evolution
of the inner radius ri with the internal pressure pi and the reduced axial force
F . In addition, at an internal pressure of pi = 13.33 [kPa] (100 [mm Hg]), the
approximate physiological pressure, we evaluate the effect of twist (torsion) on
the tube and determine the dependence of the shear γi at the inner surface on the
torsional couple Mt and the reduced axial force F . However, as will be shown, the
mechanical behavior of an anisotropic cylindrical tube under torsion can in general
only be investigated if the constitutive model is based on a fully three-dimensional
formulation.

4.1. THREE-DIMENSIONAL FORMULATION

This section is concerned with three-dimensional strain-energy functions appropri-
ate for the analysis of thick-walled tubes, which is a necessary point of departure
for the study of the mechanical behavior of arterial walls.

4.1.1. Strain-Energy Function Proposed by Delfino et al. [10]

As already mentioned, the different layers of arterial walls are highly anisotropic
due to the organized arrangement of the load carrying (collagen) components.
However, there are many isotropic strain-energy functions proposed in the lit-
erature and used in practice to characterize the mechanical response of arterial
walls (see, for example, the oversimplified rubber-like potential used in [30] which
cannot represent the strong stiffening effect of arteries in the large strain domain).
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Figure 4. Contour plot of the convex potential (33) with material parameters a = 44.2 [kPa]
and b = 16.7 [–] (see [10]).

Recently, Delfino et al. [10] proposed an (isotropic) rubber-like potential for
carotid arteries which is able to model the typical stiffening effects in the high
pressure domain. The strain-energy function � has the form

� = a

b

{
exp

[
b

2
(Ī1 − 3)

]
− 1

}
(33)

[10], where a > 0 is a stress-like material parameter and b > 0 is a non-dimensional
parameter. The first invariant of the modified right Cauchy–Green tensor C is
defined as Ī1 = C : I. Since the exponential function increases monotonically
with Ī1 it is easy to show that strict local convexity of the potential (33) as a
function of C (or equivalently E) is guaranteed, bearing in mind that because of
the incompressibility condition the components of E are not independent.

In the present context, strict local convexity means that the second derivative of
� with respect to E is positive definite, with appropriate modifications to account
for incompressibility. This fundamental physical requirement in hyperelasticity en-
sures that undesirable material instabilities are precluded (for a general discussion
of convexity in hyperelasticity the reader is referred to, for example, [42], Section 6,
and [7]). It can be shown that strict local convexity of � implies that the contours
of constant � are convex, and, in particular, that the projections of these contours
in the (E��,EZZ)-plane are convex. On the other hand, if the contours are not
convex then it can be deduced that the potential � is not strictly locally convex.
The consequences of this will be seen in the following sections, which show results
contrasting with those in Figure 4, in which the (convex) contours are illustrated.
For this figure we have used material parameters a = 44.2 [kPa] and b = 16.7 [–]
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Table I. Material and geometrical data of a human carotid
artery [10].

Material Geometry

a = 44.2 [kPa] α = 0.0◦ α = 100.0◦
b = 16.7 [–]

Ri = 3.1 [mm] Ri = 4.46 [mm]

Ro = 4.0 [mm] Ro = 5.36 [mm]

as proposed in [10]. Since the potential is isotropic the contour plots are symmetric
in the line which bisects the axes.

For the function (33) the isochoric contribution σ to the Cauchy stress tensor σ
is obtained from (10)3 as

σ = 2�1dev b, (34)

where �1 = ∂�/∂Ī1 and b is the modified left Cauchy–Green tensor. Note that
J = 1.

Hence, with the definition (3) of the left Cauchy–Green tensor, the isochoric
Cauchy stress components, which are used in equations (27)1, (27)2 and (29),
are given by (34). In order to investigate the specific arterial response we use
the material constants for a human carotid artery given in [10]. The values are
given in Table I. For the description of the stress-free configuration we have taken
α = 100.0◦, which is based on the value in [10] adjusted for the different defi-
nitions of opening angle. For consistency we take the geometry in the unloaded
configuration for the residually stressed case to be the same as that for the case
without residual stress. The geometry in the unstressed configuration is obtained
using the incompressibility condition, which furnishes a connection between the
inner and outer radii in this configuration, together with the simplifying assumption
of unchanged wall thickness. The resulting values are given in Table I. In addition,
for purposes of comparison of the shear γi at the inner surface of the tube, the
undeformed length L of the arterial tube was taken to be equal to the value of the
inner radius Ri corresponding to α = 0.0◦. This was followed for all the cylinder
models studied subsequently.

This basis for the computation of the radii in the stress-free configuration is also
adopted in the following sections. The values of the material constants that we use
for our investigations are those given in the papers in which the energy functions
were introduced. We note that these values were determined under the assumption
that the unloaded configuration is stress free (it is not clear if the same assumption
was used in [10]).

The in vivo axial pre-stretch is based on in situ measurements prior to removal
of the artery and is given as λz = 1.1 (see [10]). The mechanical response of the
human carotid artery during inflation and torsion is shown in Figure 5. The internal
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Figure 5. Deformation behavior of a human carotid artery during inflation and torsion using
the constitutive model proposed in [10]. Solid lines are numerical results with residual strains
included (α = 100.0◦) while the dashed lines are results without residual strains (α = 0.0◦).
Dependence of (a) the internal pressure pi and (b) the reduced axial force F on the inner radius
ri in the absence of shear deformation (γi = 0). Dependence of (c) the torsional couple Mt
and (d) the reduced axial force F on the shear γi at fixed internal pressure pi = 13.33 [kPa].
The shaded circles indicate the approximate central region of the physiological state.

pressure pi and the angle of twist � are varied within the ranges

0 � pi � 26.67 [kPa] and −0.15 � � � 0.15 [rad]. (35)

These loadings are applied at fixed axial stretches of the artery varying between
λz = 1.0 and λz = 1.2.

The predicted response is in good qualitative agreement with the experimentally
observed mechanical behavior of arteries; see, for example, the survey article [32]
or compare with the (rare) data on shear tests of arteries provided in [12]. With
the potential (33) the typical stiffening effect at high pressures can be replicated,
as can be seen in Figure 5(a). Remarkably, the reduced axial force F is hardly
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influenced by the changes of internal pressures pi at λz = 1.05, which is close
to the physiological pre-stretch of λz = 1.1; see Figure 5(b). In Figure 5(c) and
(d) respectively the torsional couple Mt and the reduced axial force F are plotted
against the amount of shear at the inner surface, i.e. γi = �ri/ l = �ri/λzL.

The solid lines show numerical results based on a load-free, but not stress-
free, configuration (α = 100.0◦), while the dashed lines are based on a load-free
and stress-free configuration (α = 0.0◦). As illustrated in Figure 5(a), residual
stresses influence the internal pressure/inner radius behavior moderately, while
Figure 5(b)–(d) shows a very minor influence of the residual stresses on the global
mechanical response of the artery. Note that incorporation of the residual stresses
in the load-free configuration softens the material of the artery in the sense that a
given inner radius ri is achieved with a lower internal pressure pi, a finding which
is in agreement with the analytical studies of Humphrey [32], p. 101.

4.1.2. Strain-Energy Function of Fung’s Type

The strain-energy function used most extensively for arteries appears to be the two-
dimensional exponential form proposed by Fung et al. [18]. A generalization to the
three-dimensional regime, presented by Chuong and Fung [5], assumes that the
principal directions of the stress tensor coincide with the radial, circumferential
and axial directions of the artery. Shear deformations due to, for example, torsion
of the artery, were not considered. To incorporate shear deformations E�Z in the
shear planes z = constant, Deng et al. [12] proposed an extension of the classical
two-dimensional function given in [18].

Many modifications of these strain-energy functions have been published sub-
sequently. For example, a combined polynomial-exponential form of the strain-
energy function incorporating shear deformations was given by Kas’yanov and
Rachev [35]. The most general strain-energy function of Fung’s type is formu-
lated by Humphrey [32]. It is suitable for arbitrary (three-dimensional) states of
deformations and has the form

� = 1

2
c[exp(Q) − 1], (36)

where c is a material parameter and Q is given by

Q = b1E
2
�� + b2E

2
ZZ + b3E

2
RR + 2b4E��EZZ + 2b5EZZERR

+ 2b6ERRE�� + b7E
2
�Z + b8E

2
RZ + b9E

2
R�. (37)

Here bi , i = 1, . . . , 9, are non-dimensional material parameters, while EIJ , for
I, J = R,�,Z, are the components of the modified Green–Lagrange strain tensor
referred to cylindrical polar coordinates (R,�,Z).

In the work of Fung et al. [18] and Chuong and Fung [5] there is no a priori
restriction on the material parameters presented. However, it is important to note
that in order for the (anisotropic) function � to be convex in the sense discussed
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Figure 6. Contour plots of the potential (36) with (a) material parameters c, b1, . . . , b7
in Table II, and (b) a set of parameters chosen to illustrate non-convexity.

Table II. Material and geometrical data for a rabbit carotid artery in respect of (37)
(see experiment 71 in [5]; b7 is based on the study in [12]).

Material Geometry

c = 26.95 [kPa] α = 0.0◦ α = 160.0◦
b1 = 0.9925 [–]

b2 = 0.4180 [–] Ri = 0.71 [mm] Ri = 1.43 [mm]

b3 = 0.0089 [–] Ro = 1.10 [mm] Ro = 1.82 [mm]

b4 = 0.0749 [–]

b5 = 0.0295 [–]

b6 = 0.0193 [–]

b7 = 5.0000 [–]

in Section 4.1.1 the material parameters b1, . . . , b9 must not be chosen arbitrarily.
Figure 6(a) shows a contour plot of the potential (36) with the material parameters
proposed in [5] (see the summary in Table II), while the contour plot in Figure 6(b)
uses an alternative set of parameters chosen to illustrate non-convexity of the strain-
energy function. This is one of many possible choices which lead to non-convexity.
The ‘physical’ meanings of the individual parameters are unclear (see the discus-
sion in the book by Fung [17], Section 8.6.2). Hence, if this strain-energy function
is used care must be taken to select appropriate restrictions on the values of c

and bi , since unconstrained parameter optimization does not, in general, guaran-
tee convexity. It is therefore important to be sure that the optimization process is
performed within a range of parameters for which convexity is assured.
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Furthermore, in the computational context, in order to obtain solutions of com-
plex nonlinear (initial boundary-value) problems, incremental/iterative solution
techniques of Newton’s type are frequently applied to solve a sequence of lin-
earized problems. These techniques, often employed in computational biomechan-
ics, use predicted states of deformation which might be far from the range of
deformation for which the experimental tests were conducted. This might lead to
numerical problems within the solution procedure when strain-energy functions
are used which are not convex a priori. To be specific, parameters used outside
the range for which the fitting process was performed might induce a non-convex
potential. A further comment on parameter identification for the strain-energy func-
tion (36) used in combination with relation (37) is appropriate. Because of the large
number of material parameters bi a least-square procedure can lead to problems of
non-uniqueness associated with their sensitivity to small changes in the data, as
pointed out, for example, by Fung [17], Section 8.6.1.

With equations (36) and (10)3 the components of the isochoric part of the
Cauchy stress tensor may be obtained in the cylindrical polar coordinate system
(r, θ, z), so that it is a straightforward task to solve the equilibrium equation (27)1

and to calculate the torsional couple Mt and the reduced axial force F , as given
by equations (27)2 and (29), respectively. The material and geometrical data used
for this computation are from a carotid artery of a rabbit and are summarized in
Table II. The values of the parameters c and bi , i = 1, . . . , 6, are taken from [5],
while b7 is an estimated value (measuring the resistance to distortion) based on
the shear moduli of arteries as presented in [12]. Since the associated shear strains
EZR and ER� vanish in the considered problem, the parameters b8 and b9 need
not be considered. In order to investigate the influence of residual stresses on the
global response of the artery, two different stress-free states are considered, namely
α = 0.0◦ and α = 160.0◦. The (mean) value 160.0◦ is based on the study [23].

The in vivo axial pre-stretch of the artery is given as λz = 1.695 (calculated
from the axial component of the Green–Lagrange strain given in [18], Table I,
experiment 71) and the internal pressure pi and the angle of twist � are varied
within the ranges

0 � pi � 21.33 [kPa] and − 0.10 � � � 0.10 [rad] (38)

(compare with [12, 18]). These loads are applied at fixed axial stretches of the
artery varying between λz = 1.5 and λz = 1.9. Figure 7 shows the computed
deformation behavior of the artery under various loading conditions. The influence
of residual strain on the deformation field is much larger than was the case in the
study of Section 4.1.1 (see Figure 5). This is because the opening angle α and
the ratio of the wall thickness to the diameter were larger than the values used in
Section 4.1.1. Note that at λz = 1.9 the reduced axial force F first increases with
the inner radius ri and then, at high pressures, it tends to decrease; see Figure 7(b).
This characteristic is not observed experimentally.
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Figure 7. Deformation behavior of a rabbit carotid artery during inflation and torsion for
the constitutive model (36), (37) with b8 = b9 = 0. Solid lines are numerical data with
residual strains included (α = 160.0◦) while the dashed lines are results without residual
strains (α = 0.0◦). Dependence of (a) the internal pressure pi and (b) the reduced axial force F

on inner radius ri without shear deformation (γi = 0). Dependence of (c) the torsional couple
Mt and (d) the reduced axial force F on the shear γi at fixed internal pressure pi = 13.33 [kPa].
The shaded circles indicate the approximate central region of the physiological state.

4.2. TWO-DIMENSIONAL FORMULATION

Since it is generally accepted that it is appropriate to treat arterial walls as in-
compressible materials, the restriction J = 1 can be used to find alternative ex-
pressions for the strain-energy function �, which, in general, is a function of
the strain components ERR,E��,EZZ,ER�,ERZ,E�Z. The alternative potential

�̂(E��,EZZ,E�Z), which we refer to as the two-dimensional counterpart of �,
is very popular and used frequently in the literature. Such a two-dimensional for-
mulation is not capable of describing the three-dimensional anisotropic behavior of
a thick-walled cylindrical tube under, for example, inflation and torsion. However,
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for the special case of combined bending, inflation and axial extension the potential

�̂ is suitable for predicting the three-dimensional state of stress. A comparative
study of three important examples of such potentials concludes this section.

4.2.1. The Strain-Energy Function �̂(E��,EZZ,E�Z)

We consider a thick-walled cylindrical tube of incompressible material deformed
in such a way that the modified Green–Lagrange strains ER� and ERZ are zero, as
is the case for the deformation considered in Section 3.2. Using these assumptions
and with elimination of ERR via the incompressibility constraint an alternative
two-dimensional approximation of � may be given in the form

�(ERR,E��,EZZ,ER�,ERZ,E�Z) = �̂(E��,EZZ,E�Z), (39)

where �̂ is a strain energy with the three independent strain variables E��, EZZ,
E�Z. Using the chain rule, the derivatives

∂�̂

∂Eα

= ∂�

∂Eα

+ ∂�

∂ERR

∂ERR

∂Eα

, α = ��,ZZ,�Z, (40)

are obtained. The constraint det C = det(2E + I) = 1 and equation (20)2 enable
ERR to be expressed in terms of the independent components E��, EZZ, E�Z

according to

ERR = 1

2

{[(2E�� + 1)(2EZZ + 1) − 4E
2
�Z]−1 − 1

}
. (41)

Hence, with (41), we find from (40) that

∂�

∂E��

= ∂�̂

∂E��

+ (2EZZ + 1)(2ERR + 1)2 ∂�

∂ERR

, (42)

∂�

∂EZZ

= ∂�̂

∂EZZ

+ (2E�� + 1)(2ERR + 1)2 ∂�

∂ERR

, (43)

∂�

∂E�Z

= ∂�̂

∂E�Z

− 4E�Z(2ERR + 1)2 ∂�

∂ERR

. (44)

The aim now is to solve the equilibrium equation (27)1, which requires the stress
difference σθθ−σ rr . From the stress equation (10)3 and the kinematic relation (19)2

we find that σθθ = λ2
θ∂�/∂E�� +2γ λzλθ∂�/∂E�Z +γ 2λ2

z∂�/∂EZZ and σ rr =
λ2
r ∂�/∂ERR. Using equations (42)–(44) we find that the stress difference cannot

be given in terms of the potential �̂ alone since the expression ∂�/∂ERR cannot in
general be eliminated and remains undetermined. Moreover, σθz similarly depends
on ∂�/∂ERR. This means, in particular, that it is not in general possible to use
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the alternative potential �̂ to derive the complete state of stress in an anisotropic
cylindrical tube under inflation and torsion in a three-dimensional context.

It is worth noting, however, that the particular stress combinations

σ θθ − σ rr − 2γ σ θz = λ2
θ

∂�̂

∂E��

− γ 2λ2
z

∂�̂

∂EZZ

, (45)

σ zz − σ rr = λ2
z

∂�̂

∂EZZ

(46)

are given in terms of �̂, and we note that λ2
θ = 2E�� +1, (1+γ 2)λ2

z = 2EZZ +1.
Exceptionally, for an isotropic material, since the Cauchy stress tensor is coaxial

with the left Cauchy–Green tensor, the universal relation

γ λ2
z(σ θθ − σzz) = (λ2

θ + γ 2λ2
z − λ2

z)σ θz (47)

is obtained. This can be shown as follows. Let cos φeθ + sin φez denote a principal
axis of the Cauchy–Green tensor b. Then, using (21), the angle φ may be calculated
in the form

tan 2φ = 2γ λ2
z

λ2
θ + γ 2λ2

z − λ2
z

, (48)

while, for the Cauchy stresses, we have

tan 2φ = 2σ θz

σ θθ − σ zz

. (49)

The combination of (45)–(47) enables the normal stress differences and the shear

stress to be expressed in terms of �̂. We omit the details since consideration of
isotropic models is not of interest here.

REMARK 4.1. For an anisotropic material, in the special case γ = 0 (no shear
deformation), equations (27)1 and (28) can be solved on the basis of the two-

dimensional form of strain-energy function �̂(E��,EZZ,E�Z). With γ = 0, it
follows from (45) that

σ θθ − σ rr = (1 + 2E��)
∂�̂

∂E��

. (50)

Using (46) together with (50) the expression 2σ zz − σ θθ − σ rr in (29) is then
obtained in the form

2σ zz − σ θθ − σ rr = 2(1 + 2EZZ)
∂�̂

∂EZZ

− (1 + 2E��)
∂�̂

∂E��

. (51)

Hence, the reduced axial force F may be expressed in terms of the strain energy �̂.
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Table III. Material and geometrical data for a rabbit carotid artery based on the
potential (52) (see experiment 71 in [18]).

Material Geometry

c1 = −24.385 [kPa] α = 0.0◦ α = 160.0◦
c2 = −3.589 [kPa]
c3 = −1.982 [kPa] Ri = 0.71 [mm] Ri = 1.43 [mm]

c4 = 46.334 [kPa] Ro = 1.10 [mm] Ro = 1.82 [mm]

c5 = 32.321 [kPa]

c6 = 3.743 [kPa]

c7 = 3.266 [kPa]

4.2.2. Strain-Energy Function Proposed by Vaishnav et al. [62]

Two-dimensional forms of strain-energy functions suitable for the description of
the deformation behavior of canine thoracic aorta using polynomial expressions
have been proposed by Vaishnav et al. [62]. This classic paper presents three poly-
nomial expressions with 3, 7 or 12 material parameters. As studied in [62] the
three-parameter model is too inaccurate for a serious investigation and the twelve-
parameter model does not have a significant advantage over the seven-parameter
model. Hence, in the present paper we focus attention on the seven-parameter
model, which is written in the form

�̂ = c1E
2
�� + c2E��EZZ + c3E

2
ZZ + c4E

3
�� + c5E

2
��EZZ

+ c6E��E
2
ZZ + c7E

3
ZZ, (52)

where c1, . . . , c7 are stress-like material parameters and E�� and EZZ are the com-
ponents of the modified Green–Lagrange strain tensor in the circumferential and
axial directions, respectively. In Fung et al. [18] the form (52) was used to fit the
parameters c1, . . . , c7 to experimental data from rabbit carotid arteries. The result
is summarized in Table III. Note that with these values of the material parameters
the strain-energy function (52) is not convex, as the contour plot in Figure 8 shows.
In fact, because of the cubic nature of the strain-energy function (52), it is not
convex for any set of values of the material constants.

While the performance of the constitutive law (52) is acceptable in the tensile
region (E�� > 0, EZZ > 0), it fails for compressive strains. Moreover, Fung [17]
showed that two completely different sets of material parameters c1, . . . , c7 are
able to represent the mechanical response of the same artery quite well. This lack
of uniqueness of the material parameters is problematic. Note that a polynomial
expression, different from that in [62], has been proposed in [63] in order to model
the three-dimensional anisotropic behavior of a canine carotid artery and of a rabbit
aorta.
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Figure 8. Contour plot of the potential (52) with material parameters given in Table III.

Figure 9. Deformation behavior of a rabbit carotid artery during inflation based on the
constitutive model in [62]. Solid lines are numerical results with residual strains included
(α = 160.0◦) while dashed lines are results without residual strains (α = 0.0◦). Dependence
of (a) the internal pressure pi, and (b) the reduced axial force F on the inner radius ri, without
shear deformation (γi = 0). The shaded circles indicate the approximate central region of the
physiological state.

Using (52) we may solve the equilibrium equation (27)1 and calculate the re-
duced axial force F from equation (29). For this purpose, we use the formulas (50)
and (51) and apply the procedure described in Remark 3.2. The material and geo-
metrical data for a rabbit carotid artery are as summarized in Table III and we use
the same set of geometrical data and the same range of loading as in Section 4.1.2.

Figure 9 shows the predicted mechanical response of the considered artery (ex-
periment 71 in [18]). The dependence of the internal pressure pi on the inner radius
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Figure 10. Contour plots of the potential (53) with (a) material parameters given in Table IV,
adopted from [59], and (b) with a set of parameters chosen to illustrate non-convexity.

ri is plotted in Figure 9(a). Note that the solution of the equilibrium equation (27)1

is not unique, since, for example, pi = 0 corresponds to two different values of ri.
This is a consequence of the non-convexity of the potential. The dependence of the
reduced axial force F on the inner radius ri is plotted in Figure 9(b). As can be seen,
for axial stretches higher than the typical physiological stretch, the characteristic
increase of F with the inner radius ri illustrated in Figures 5(b) and 7(b) is not
predicted by the potential (52) with the set of material parameters given in Table III.

The potential (52) represents the first attempt to describe the anisotropic me-
chanical response of arteries. However, as indicated above, its applicability is lim-
ited.

4.2.3. Strain-Energy Function Proposed by Fung et al. [18]

The well-known exponential strain-energy function due to Fung et al. [18] has been
proposed in the two-dimensional form

�̂ = 1

2
c[exp(Q̂) − 1], Q̂ = b1E

2
�� + b2E

2
ZZ + 2b4E��EZZ, (53)

where c is a stress-like material parameter and b1, b2, b4 are non-dimensional para-
meters. However, as discussed in Section 4.1.2, the material parameters cannot be
chosen arbitrarily if convexity of the function (53) is desired. Contour plots of the
potential (53) are shown in Figure 10. The material parameters proposed in [59],
and given in Table IV, are used in Figure 10(a), in which case the contours are
convex. On the other hand, non-convexity is illustrated in Figure 10(b) in respect of
a specific choice of parameters. As in the case of Section 4.1.2, the non-convexity
can be demonstrated for a wide range of parameter values. This is easy to check
because of the quadratic nature of Q̂ in equation (53)2. In fact, it can be shown, for
example, that if c > 0, then (53) is strictly locally convex if and only if b1 > 0,
b2 > 0 and b1b2 > b2

4.
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Table IV. Material and geometrical data for a dog carotid artery based on the
potential (53) (see experiment D850815C in [59]).

Material Geometry

c = 28.58 [kPa] α = 0.0◦ α = 160.0◦
b1 = 0.8329 [–]
b2 = 0.6004 [–] Ri = 1.21 [mm] Ri = 2.40 [mm]

b4 = 0.0169 [–] Ro = 1.77 [mm] Ro = 2.96 [mm]

Figure 11. Deformation behavior of a dog carotid artery (see experiment D850815C in [59])
during inflation using the constitutive model in [18]. Solid lines are numerical results with
residual strains included (α = 160.0◦) while the dashed lines are results without residual
strains (α = 0.0◦). Dependence of (a) the internal pressure pi and (b) the reduced axial force
F on the inner radius ri, without shear deformation (γi = 0). The shaded circles indicate the
approximate central region of the physiological state.

By means of equations (53) and (50) we may solve the equation of equilibrium
(27)1 and calculate the reduced axial force F , as outlined in Remark 3.2. The
resulting response is shown in Figure 11 for the material and geometrical data
given in Table IV. In order to investigate the influence of residual stresses on the
response of the artery, two different stress-free states are considered (α = 0.0◦ and
α = 160.0◦). The in vivo axial pre-stretch of the artery is given as λz = 1.72 and
the internal pressure pi is varied within the range

0 � pi � 26.67 [kPa] (54)

(see experiment D850815C in [59]). The inflation is considered at fixed axial
stretches of the artery between λz = 1.5 and λz = 1.9.

The potential (53) is able to model the basic characteristics of the mechanical
behavior of arteries except in the low pressure domain. The problem in the low
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Figure 12. Contour plots of the potential (55) with (a) material parameters given in Table V,
adopted from [59], and (b) a set of parameters chosen to illustrate non-convexity.

pressure domain, as can be seen in Figure 11(a), is that ri is independent of the
axial stretch when pi = 0. A strong influence of the residual stresses on the pi − ri

behavior is observed.

4.2.4. Strain-Energy Function Proposed by Takamizawa and Hayashi [59]

Another well-known two-dimensional form of strain-energy function for arteries
was proposed by Takamizawa and Hayashi [59]. It has the logarithmic form

�̂ = −cLn(1 − ψ), (55)

where c is a stress-like material parameter and the function ψ is given in the form

ψ = 1

2
b1E

2
�� + 1

2
b2E

2
ZZ + b4E��EZZ. (56)

Here b1, b2, b4 are non-dimensional material parameters and E��, EZZ are the
components of the modified Green–Lagrange strain tensor E in the circumferential
and axial directions, respectively.

Note that the proposed definition (56) does not, in general, preclude ψ from

being 1, which leads to an infinite value of �̂ in certain states of deformation.
Furthermore, for ψ > 1, the argument of the logarithmic function (55) is negative
and the function is not then defined. This type of strain-energy function is therefore
only applicable for a limited range of states of deformation. Moreover, it is convex
under the same conditions as discussed in respect to (53). The material parameters
proposed in [59], and given in Table V, are used to produce the convex contours
in Figure 12(a), while an alternative set of parameters is used in Figure 12(b) to
illustrate non-convexity of the strain-energy function.

Using equations (55), (56) and (50) we may solve equation (27)1 and calcu-
late the reduced axial force F , as outlined in Remark 3.2. The material data for



ARTERIAL WALL MECHANICS 33

Table V. Material and geometrical data for a dog carotid artery based on (55) (see
experiment D850815C in [59]).

Material Geometry

c = 57.94 [kPa] α = 0.0◦ α = 160.0◦
b1 = 0.6311 [–]
b2 = 0.4728 [–] Ri = 1.21 [mm] Ri = 2.40 [mm]

b4 = 0.0301 [–] Ro = 1.77 [mm] Ro = 2.96 [mm]

Figure 13. Deformation behavior of a dog carotid artery during inflation using the constitutive
model in [59] (experiment D850815C). Solid lines are numerical results with residual strains
included (α = 160.0◦) while the dashed lines are results without residual strains (α = 0.0◦).
Dependence of (a) the internal pressure pi and (b) the reduced axial force F on the inner radius
ri, without shear deformation (γi = 0). The shaded circles indicate the approximate central
region of the physiological state.

a dog carotid artery (see [59]) and the geometrical data used are summarized in
Table V. We investigated the same range of loading as described in Section 4.2.3.
The resulting arterial response is shown in Figure 13.

The potential (55) is able to represent the typical response of arteries quite
well [59] except in the low pressure region, as also observed in Section 4.2.3
in respect of the potential (53). The residual stresses have a strong influence on
the pi − ri behavior. Finally, we remark that the potential (55), if used within a
(displacement-driven) finite element formulation, may, because of the problems
mentioned above, lead to numerical difficulties.
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5. A Multi-Layer Model for Arterial Walls

In this section we propose a potential that models each layer of the artery as a
fiber-reinforced composite. The basic idea is to formulate a constitutive model
which incorporates some histological information. Hence, the material parameters
involved may be associated with the histological structure of arterial walls (i.e.
fiber directions), a feature which is not possible with the phenomenological models
described so far in the paper. The underlying physical background of the proposed
constitutive model leads to a formulation that avoids the problems encountered
with some phenomenological models. The model is based on the theory of the
mechanics of fiber-reinforced composites [57] and embodies the symmetries of a
cylindrically orthotropic material.

5.1. CONSTITUTIVE MODEL FOR THE ARTERY LAYERS

Since arteries are composed of (thick-walled) layers we model each of these layers
with a separate strain-energy function. From the engineering point of view each
layer may be considered as a composite reinforced by two families of (collagen)
fibers which are arranged in symmetrical spirals.

We assume that each layer responds with similar mechanical characteristics and
we therefore use the same form of strain-energy function (but a different set of
material parameters) for each layer. We suggest an additive split of the isochoric
strain-energy function � into a part � iso associated with isotropic deformations and
a part �aniso associated with anisotropic deformations [29]. Since the (wavy) col-
lagen fibers of arterial walls are not active at low pressures (they do not store strain
energy) we associate � iso with the mechanical response of the non-collagenous
matrix material, which we assume to be isotropic. The resistance to stretch at high
pressures is almost entirely due to collagenous fibers [49] and this mechanical re-
sponse is therefore taken to be governed by the anisotropic function �aniso. Hence,
the (two-term) potential is written as

�(C, a0 1, a0 2) = � iso(C) + �aniso(C, a0 1, a0 2), (57)

where the families of collagenous fibers are characterized by the two (reference)
direction vectors a0 i , i = 1, 2, with |a0 i| = 1. Note that in (57) we use C rather
than E as the deformation measure.

We include structure tensors in accordance with the formulation in Section
3.1.2. Specifically, we incorporate two such tensors, Ai , i = 1, 2, defined as the
tensor products a0 i ⊗ a0 i. The integrity basis for the three symmetric second-order
tensors C, A1, A2 then consists of the invariants

Ī1(C) = tr C, Ī2(C) = 1

2
[(tr C)2 − tr C

2], Ī3(C) = det C = 1, (58)

Ī4(C, a0 1) = C : A1, Ī5(C, a0 1) = C
2 : A1, (59)
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Ī6(C, a0 2) = C : A2, Ī7(C, a0 2) = C
2 : A2, (60)

Ī8(C, a0 1, a0 2) = (a0 1 · a0 2) a0 1 · Ca0 2, Ī9(a0 1, a0 2) = (a0 1 · a0 2)
2; (61)

see [57, 25]. Since the invariants Ī3, Ī9 are constants we may express equation (57)
in the reduced form

�(C,A1,A2) = � iso(Ī1, Ī2) + �aniso(Ī1, Ī2, Ī4, . . . , Ī8). (62)

Note that the invariants Ī4 and Ī6 are the squares of the stretches in the directions of
a0 1 and a0 2, respectively, so that they are stretch measures for the two families of
(collagen) fibers and therefore have a clear physical interpretation. For simplicity,
in order to minimize the number of material parameters, we consider the reduced
form of (62) given by

�(C,A1,A2) = � iso(Ī1) + �aniso(Ī4, Ī6). (63)

The anisotropy then arises only through the invariants Ī4 and Ī6, but this is suffi-
ciently general to capture the typical features of arterial response.

Finally, the two contributions � iso and �aniso to the function � must be particu-
larized so as to fit the material parameters to the experimentally observed response
of the arterial layers. We use the (classical) neo-Hookean model to determine the
isotropic response in each layer, and we write

� iso(Ī1) = c

2
(Ī1 − 3), (64)

where c > 0 is a stress-like material parameter. The strong stiffening effect of each
layer observed at high pressures motivates the use of an exponential function for
the description of the strain energy stored in the collagen fibers, and for this we
propose

�aniso(Ī4, Ī6) = k1

2k2

∑
i=4,6

{
exp[k2(Īi − 1)2] − 1

}
, (65)

where k1 > 0 is a stress-like material parameter and k2 > 0 is a dimensionless
parameter. An appropriate choice of k1 and k2 enables the histologically-based
assumption that the collagen fibers do not influence the mechanical response of
the artery in the low pressure domain [49] to be modeled.

All that remains is to determine an expression for the stress, which we pro-
vide here in the Eulerian description. Using (10)3 and the proposed particular-
izations (64) and (65), we obtain, after some straightforward manipulations, the
explicit isochoric contribution σ to the Cauchy stress tensor, namely

σ = c dev b +
∑
i=4,6

2�idev(ai ⊗ ai), (66)

where �4 = ∂�aniso/∂Ī4, �6 = ∂�aniso/∂Ī6 denote (scalar) response functions
and ai = Fa0 i, i = 1, 2, the Eulerian counterparts of a0 i . For a detailed derivation



36 GERHARD A. HOLZAPFEL ET AL.

Figure 14. Material and geometrical data for a carotid artery from a rabbit in respect of (67)
and (68) (see experiment 71 in [5]).

of equation (66) the reader is referred to the more general constitutive framework
described in [20].

5.2. ARTERY MODELED AS A TWO-LAYER THICK-WALLED TUBE WITH

RESIDUAL STRAINS

In order to report the performance of the proposed constitutive model we study
the mechanical response of a healthy young arterial segment (with no pathological
intimal changes). For this case the innermost layer of the artery is not of (solid) me-
chanical interest, and we therefore focus attention on modeling the two remaining
layers, i.e. the media and the adventitia. It is then appropriate to model the artery
as a two-layer thick-walled tube (with residual strains), as illustrated in Figure 14.

This model uses 6 material parameters, i.e. cM, k1 M, k2 M for the media and
cA, k1 A, k2 A for the adventitia. In respect of equations (63)–(65) the free-energy
functions for the considered two-layer problem may be written as

�M = cM

2
(Ī1 − 3) + k1 M

2k2 M

∑
i=4,6

{
exp[k2 M(Īi M − 1)2] − 1

}
,

Ri � R � Ri + HM, (67)

�A = cA

2
(Ī1 − 3) + k1 A

2k2 A

∑
i=4,6

{
exp[k2 A(Īi A − 1)2] − 1

}
,

Ri + HM � R � Ro (68)

for the media and adventitia, respectively. The constants cM and cA are associated
with the non-collagenous matrix of the material, which describes the isotropic part
of the overall response of the tissue. Note, however, that the matrix material is
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significantly less stiff than its elastin fiber constituent. The constants k1 M, k2 M

and k1 A, k2 A are associated with the anisotropic contribution of collagen to the
overall response. The material parameters are constants and do not depend on the
geometry, opening angle or fiber angle. The internal pressure/radius response, of
course, does depend on geometry, opening angle and fiber angle, but we have not
included here an analysis of the effect of changes in these quantities. However,
our studies have found that in the high-pressure regime the stress–strain response
depends significantly on the fiber angles (as should be expected). The fiber angles
are associated with the stress-free configuration, as indicated in Figure 14, and we
have assumed that they are the same in the load-free configuration. The difference
in angle between the unstressed and unloaded configurations for the case we con-
sidered goes from (approximately) −3.0◦ on the inner boundary to +2.7◦ on the
outer boundary (mean value 0.2◦). This approximation has a negligible influence
on the subsequent analysis.

The invariants, associated with the media M and the adventitia A, are defined by
Ī4 j = A1 j : C and Ī6 j = A2 j : C, j = M,A, and HM is the reference thickness
of the media, as illustrated in Figure 14. The tensors A1 j , A2 j , characterizing the
structure of the media and adventitia, are given by

A1 j = a0 1 j ⊗ a0 1 j , A2 j = a0 2 j ⊗ a0 2 j , j = M,A, (69)

where, in a cylindrical polar coordinate system, the components of the direction
vectors a0 1 j and a0 2 j have, in matrix notation, the forms

[a0 1 j ] =

 0

cos βj

sin βj


 , [a0 2 j ] =


 0

cos βj

− sin βj


 , j = M,A, (70)

and βj , j = M, A, are the angles between the collagen fibers (arranged in sym-
metrical spirals) and the circumferential direction in the media and adventitia, as
indicated in Figure 14. Note that Finlay et al. [13] reported that in, for example, hu-
man brain arteries the (collagenous) fiber orientations also have small components
in the radial direction. However, we neglect this feature in the present work.

Because of the wavy structure of collagen it is regarded as not being able to
support compressive stresses. We therefore assume that the fibers are active in ex-
tension and inactive in compression. Hence, in the proposed model the anisotropic
terms in the free-energy functions (67) and (68) should only contribute when the
fibers are extended, that is when Ī4 j > 1 or Ī6 j > 1, j = M,A. If one or more of
these conditions is not satisfied then the relevant part of the anisotropic function is
omitted from the expressions (67) and (68). If, for example, Ī4 A and Ī6 A are less
than or equal to 1, then the response of the adventitia is purely isotropic. When
these conditions are taken into account, convexity is guaranteed by the form of the
free-energy functions (67) and (68).

Contour plots for the two arterial layers (media and adventitia) based on the
material parameters given in Figure 14 are depicted in Figure 15. As can be seen,
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Figure 15. Contour plots of the potentials (67) for the media (a) and (68) for the adventitia
(b) using material parameters given in Figure 14. The arrows show the directions of greatest
ascent in the regions E�� � 0, EZZ � 0.

the two potentials are convex and anisotropic. In addition, the directions of greatest
ascent (illustrated by arrows in Figure 15) in the region E�� � 0, EZZ � 0 are
clearly different for the two layers. These directions are determined mainly by the
orientations of the collagen fibers, which tend to be nearly circumferential in the
media and nearly axial in the adventitia. Note that where E�� < 0 and EZZ < 0
the (symmetric) contours reflect the isotropy in this region.

Experimental tests performed by Von Maltzahn et al. [39], Yu et al. [69] and
Xie et al. [68] indicate that the elastic properties of the media and adventitia are
different. Their results show that the media is much stiffer than the adventitia. In
particular, it was found that in the neighborhood of the reference configuration
the mean value of Young’s modulus for the media, for several pig thoracic aortas,
is about an order of magnitude higher than that of the adventitia [69]. For our
proposed constitutive model this observation implies that for these materials the
neo-Hookean parameters are such that the ratio cM/cA is typically in the range
of 6 to 14. This effectively reduces the number of material parameters, and for
definiteness we therefore set cM = 10cA for purposes of numerical calculation. In
general, however, this ratio depends on the topographical site.

We use geometrical data from [5] for a carotid artery from a rabbit (experiment
71 in [18]) and make the assumptions that the media occupies 2/3 of the arterial
wall thickness and that the wall thickness of each layer in the unloaded configura-
tion (α = 0.0◦) is the same as for the case without residual stress (α = 160.0◦).
In order to identify the material parameters of the two-layer model for healthy
arterial walls, we fitted the parameters to the experimental data from experiment
71 in [18] and used the standard nonlinear Levenberg–Marquardt algorithm. The
material parameters obtained are summarized in Figure 14. For more explanation
of the underlying fitting process the reader is referred to [21]. For purposes of
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Figure 16. Deformation behavior of a carotid artery during inflation and torsion using the
constitutive model (67)–(68). Solid lines are numerical results with residual strains included
(α = 160.0◦) and the dashed lines are results without residual strains (α = 0.0◦). Dependence
of (a) the internal pressure pi and (b) the reduced axial force F on inner radius ri, without shear
deformation (γi = 0). Dependence of (c) the torsional couple Mt and (d) the reduced axial
force F on the shear γi at fixed internal pressure pi = 13.33 [kPa]. The shaded circles indicate
the approximate central region of the physiological state.

comparison, we make the assumption that the configuration shown in Figure 14
is stress-free. But, bearing in mind the discussion in Section 3.2.1 concerning a
single layer, this simplifying assumption must be regarded as an approximation.
In practice, the opening angles and the stress-free configurations for the separate
layers would be different.

The mechanical response of the carotid artery during bending, inflation, axial
extension and torsion is shown in Figure 16. The internal pressure pi and the angle
of twist � are varied within the ranges

0 � pi � 21.33 [kPa] and −0.10 � � � 0.10 [rad]. (71)
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The internal pressure versus radius behavior in the low pressure domain shown in
Figure 16(a) clearly differs from the pressure/radius curves discussed in previous
sections, as comparison with Figures 5(a), 7(a), 9(a), 11(a) and 13(a) shows. The
proposed model (67)–(68) is able to describe the salient features of arterial elastic-
ity, such as the experimentally observed ‘sigma-shaped’ form of the pressure/radius
relationship; see Figure 2(a) in [66]. Note that residual strains have a strong influ-
ence on the global pressure/radius response of the artery, which is similar to what
was observed for the other potentials treated in this paper except for that in [10], as
discussed in Section 4.1.1, for which α = 100.0◦ and a smaller value of the wall
thickness to diameter ratio was used.

Figure 16(b) shows that the proposed potential (67)–(68) is also able to model
the typical evolution of the reduced axial force F with inflation (increase of the
inner radius) of the artery; see Figure 2(b) in [66]. This means that F is a decreasing
function of ri at axial stretches λz less than some value above the physiological
stretch and an increasing function for λz greater than this value (this effect is also
evident in Figure 7(b)). This characteristic behavior can also be replicated with the
other potentials described in Section 4 except for the constitutive model in [62];
see Figure 9(b).

The response of the artery during torsion at the internal (physiological) pres-
sure pi = 13.33 [kPa] is plotted in Figure 16(c), (d). As can be seen from Fig-
ure 16(c), the torsional couple Mt increases more slowly than the shear γi =
�ri/ l = �ri/λzL on the inner boundary increases (i.e. the slope of the curve
decreases). One possible explanation of this interesting phenomenon is as follows:
since the artery is inflated with the internal physiological pressure, the (collagen)
fiber reinforcement is activated and the fibers are much stiffer than the matrix ma-
terial. During torsion from this state of deformation the nearly inextensible fibers
cause the arterial diameter to decrease, which leads to a reduction in the torsional
couple Mt given by equation (26)2. This realistic diameter-shrinking behavior of
the artery during torsion seems to be a consequence of the considered fiber rein-
forcement (orthotropy). However, this effect may also be predicted by a non-convex
isotropic strain-energy function. Of the potentials discussed in Section 4 only that
reviewed in Section 4.1.2 can predict this phenomenon (see Figure 7(c)).

In Figure 16(d) the reduced axial force F during torsion is plotted against the
shear γi. For an axial pre-stretch λz = 1.5 the reduction in the inner radius ri

due to torsion is about 5.8% (γi = 0.119) and 7.8% for λz = 1.9 (γi = 0.085).
This behavior is in qualitative agreement with experimental observations presented
in [12] and may also be reproduced with the potentials described in Sections 4.1.1
and 4.1.2; see Figures 5(d), 7(d). Note the relatively strong influence of residual
strains at high axial stretches compared with that shown in Figure 7(d).

REMARK 5.1. The fully three-dimensional formulation of the convex poten-
tial (67)–(68) allows the characteristic anisotropic behavior of healthy arteries un-
der combined bending, inflation, axial extension and torsion to be predicted. It
is not, however, restricted to a particular geometry such as axisymmetry, and is
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Figure 17. Mechanical separation of the layers of a human external iliac artery into a stiff
media-intima tube (on the left-hand side) and a limp adventitia (from C. Schulze-Bauer, MD,
Computational Biomechanics, Graz University of Technology, Austria, with permission).

accessible to approximation techniques such as the finite element method. For an
extension of the anisotropic model to the finite viscoelastic domain see [26] and
for an extension of the constitutive framework to the elastoplastic domain see [20]
and [21]. All these recent works focus on implementation of the models in a finite
element program.

The proposed constitutive model has the merit that it is based partly on histolog-
ical information. It therefore allows the material parameters to be associated with
the constituents (matrix and collagen) of each solid mechanically-relevant layer.
Since the media and adventitia have different physiological functions, a two-layer
model using different strain-energy functions for the media and adventitia seems
to be essential. This idea goes back to von Maltzahn et al. [38], who proposed
a cylindrical two-layer model using an isotropic (polynomial) function (with one
coefficient) for the media and an anisotropic strain-energy function for the adven-
titia (with three coefficients). This approach is indispensable for the study of stress
distributions across the arterial wall and allows a histomechanical investigation
of the arterial layers and their underlying physiological functions. Extension to
a three-layer constitutive model incorporating pathological intimal changes is a
straightforward task.

Figure 17, in which mechanically separated media-intima and adventitia layers
are shown, provides a graphic illustration of the effect of the different proper-
ties and (possibly) different residual stresses in the two tubes. In the unloaded
configuration the relevant geometrical quantities are – media-intima: inner radius,
4.07 [mm]; thickness 0.98 [mm]; adventitia: thickness 0.4 [mm]. The given geom-
etry should be taken into account in interpreting the figure.
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Figure 18. Plots of the principal Cauchy stresses σθθ , σzz, σrr in the circumferential, axial
and radial directions through the deformed media and adventitia layers in the physiological
state with pi = 13.33 [kPa], λz = 1.7, γi = 0: (a) without residual stress (α = 0.0◦); (b) with
residual stress (α = 160.0◦). The abscissa is r − ri. The numerical results are obtained for the
constitutive models (67) and (68) with geometrical data and material constants as in Figure 14.

5.3. STRESS DISTRIBUTION THROUGH THE DEFORMED ARTERIAL WALL

One important aspect of the influence of residual stress is the effect that it has on
the stress distribution through the arterial wall in the physiological state. Whilst
we have seen from, for example, Figure 16 its effect on the overall pressure/radius
response its effect on the stress distribution through the arterial wall is more pro-
nounced. This is illustrated in Figure 18, in which the distributions of the principal
Cauchy stress components σθθ , σzz and σrr through the deformed wall thickness
(media and adventitia layers) are plotted against r − ri, where r is the deformed ra-
dial coordinate and ri the deformed inner radius. The geometrical data and material
constants shown in Figure 14 are again used in conjunction with the material mod-
els (67) and (68). The physiological state is taken to correspond to pi = 13.33 [kPa]
and λz = 1.7, with no torsion (γi = 0). The calculation can be carried out by using
any numerical tool. However, in order to solve the three-dimensional boundary-
value problem for the stress components σθθ , σzz and σrr (rather than for σ θθ ,
σzz and σ rr , as used throughout the text) it seems to be convenient to employ the
(mixed) finite element method. Details of the computational aspects are described
in Holzapfel and Gasser [26].

Figure 18(a) shows the Cauchy stress distributions for the case in which there
are no residual stresses (α = 0.0◦), while Figure 18(b) shows the corresponding
plot with residual stresses included (α = 160.0◦). The tangential stresses σθθ and
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σzz are discontinous at the media/adventitia interface, while the radial stress σrr

is continuous. Note that the magnitude of σrr is much smaller than that of the
tangential stresses. The behavior shown in Figure 18(a) is similar to that found by
Von Maltzahn and Warriyar [39] for bovine carotid arteries. Figure 18 demonstrates
the relatively high values of the circumferential stress in the media compared with
that in the adventitia, which was also found, for example, in [39]. Within the
media there is a significant difference between the distributions of σθθ and σzz

in the two plots. Interestingly, although the maximum circumferential stress σθθ

(which occurs at the inner wall) is reduced significantly, the mean circumferential
stress through the wall is increased by the presence of residual stress. Note that the
residual stress also influences the deformed wall thickness and the strains in the
physiological state. In particular, at the inner wall, for example, the circumferential
strain (measured relative to the stress-free configuration) is reduced by the residual
stress.

The most important influence of the residual stress is the reduction in the maxi-
mum stress values σθθ and σzz (which occur at the inner side of the media) and the
gradients of σθθ and σzz in the media, an effect which has been reported previously
for a single layer (see, for example, Fung [16], Section 11.3). Stress gradients
would be reduced further by larger values of α, as has also been described in [16].
Indeed, it is often assumed that the arterial wall adapts itself so that the circumfer-
ential stresses are uniform within each layer. Moreover, the assumption of uniform
strain is sometimes adopted (see, for example, Takamizawa and Hayashi [59]).
Some consequences of these assumptions have been discussed in a recent paper by
Ogden and Schulze-Bauer [43].

6. Summary and Concluding Remarks

For a deeper understanding of the highly nonlinear deformation mechanisms and
stress distributions in arteries under different loading conditions and the improve-
ment of diagnostics and therapeutical procedures that are based on mechanical
treatments, a reliable constitutive model of arteries is an essential prerequisite.

For the description of the nonlinear elastic behavior of arterial walls, there are
essentially polynomial, exponential and logarithmic forms of strain-energy func-
tion available in the literature. A representative selection of models in common
use has been investigated in this paper and evaluated in detail. This comparative
study was conducted in respect of the mechanical response of a thick-walled tube
under combined bending, inflation, axial extension and torsion and with reference
to fundamental continuum mechanical principles. It is hoped that this simple study
will offer some guidance for the evaluation of alternative forms of strain-energy
function for arteries.

The constitutive model of Delfino et al. [10], which is based on an isotropic de-
scription, is not able to reproduce the pronounced anisotropic mechanical behavior
of arteries observed in several experimental investigations. Nevertheless, it is worth
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noting that its predictions for the restricted kinematics and loading conditions con-
sidered here are in some respects qualitatively similar to those for the anisotropic
energy functions discussed in Section 4.

The two-dimensional formulation discussed in Section 4.2.1 does not, in gen-
eral, permit the stress response under certain combined loadings (such as inflation
and torsion) to be modeled. Exceptionally, if the material is isotropic or if it de-
scribes a membrane model, such combined loadings can be analyzed, as shown
in Section 4.2.1. However, such a formulation, because it omits ER�, ERZ and
ERR, is inherently limited to specific kinematics or to a membrane description. For
example, if ERR is omitted then the inflation/torsion problem cannot be solved for
a thick-walled tube. The three well-established anisotropic models developed by
Vaishnav et al. [62], Fung et al. [18] and Takamizawa and Hayashi [59], which we
have discussed in Section 4.2, are special cases of this two-dimensional formula-
tion. A fortiori, their applicability is limited, but, as we have seen, they do predict
qualitatively reasonable response for restricted geometry and loadings. Moreover,
they have contributed to our current level of understanding of arterial wall me-
chanics. Thus, isotropic or two-dimensional anisotropic energy functions may be
valuable under some conditions, but, bearing in mind the limitations discussed
above, they should be used with caution.

In the theory of elasticity the notion of convexity of the strain-energy function
(which is dependent on the choice of deformation measure used) has an important
role in ensuring physically meaningful and unambiguous mechanical behavior. It
also induces desirable mathematical features in the governing equations, which are
important from the point of view of numerical computations. A problem detected in
the potentials considered in this comparative study is the general lack of convexity.
For example, the anisotropic potential of Vaishnav et al. [62] is not convex for any
set of material parameters. The strain-energy functions of Fung et al. [18], Chuong
and Fung [5] and Takamizawa and Hayashi [59] are not convex for all possible sets
of material parameters, and restrictions on these parameters are therefore needed
to ensure convexity and, therefore, to avoid material instabilities.

The three-dimensional anisotropic mechanical response of arteries points to the
need for three-dimensional constitutive models, and suitable generalizations of the
above-mentioned models must therefore be employed. All the models discussed
above are based on a phenomenological approach in which the macroscopic nature
of the biological material is modeled. This approach, which is concerned mainly
with fitting the constitutive equations to experimental data, is not capable of relat-
ing the deformation mechanism to the known architectural structure of the arterial
wall. The material parameters have no direct physical meaning and are therefore
treated as numbers without clear physical interpretation.

From this comparative study and the experience gained, it may be concluded
that there is a need for an alternative form of constitutive model which avoids the
limitations discussed. It is for this reason that we have proposed an approach in
which arterial walls are approximated as two-layer thick-walled tubes, with each
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layer modeled as a highly deformable fiber-reinforced composite. This leads to a
fully three-dimensional anisotropic material description of the artery incorporating
histological information. The proposed two-layer model uses a set of six material
parameters whose interpretations can be partly based on the underlying histological
structure.

The new model discussed in this paper is consistent with both mechanical and
mathematical requirements and is suitable for use within the context of finite el-
ement methods (see, for example, [26, 20] and [21]). It is also applicable for
arbitrary geometries so that more complex boundary-value problems can be solved.
As described in Section 5.3, this approach enables insight into the nature of the
stress distribution across the arterial wall to be gained, and therefore offers the
potential for a detailed study of the mechanical functionality of arteries.

The importance of including residual strains (and stresses), which was shown
previously by scientists such as Chuong and Fung [6], has been emphasized. As we
have seen, incorporation of residual strains in the load-free configuration changes
not only the overall pressure/radius response of the artery but also the stress distri-
bution through the deformed arterial wall (see also [5]). Thus, in order to predict
reliable stress distributions, the parameter identification process must incorporate
residual strains in the load-free configuration.
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