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Abstract. The paper investigates classes of languages of in�nite words
with respect to the acceptance conditions of the �nite automata rec-
ognizing them. Some new natural classes are compared with the Borel
hierachy. In particular, it is proved that (fin,=) is as high as FR

σ and GR
δ .

As a side e�ect, it is also proved that in this last case, considering or not
considering the initial state of the FA makes a substantial di�erence.

Keywords: ω-rational languages, Borel hierarchy, acceptance conditions

1 Introduction

Languages over in�nite words have been used since the very introduction of sym-
bolic dynamics. Afterwards, they have spread in a multitude of scienti�c �elds.
Computer science is more directly concerned for example by their application in
formal speci�cation and veri�cation, game theory, logics, etc..

ω-rational languages have been introduced as a natural extension of languages
of �nite words recognized by �nite automata. Indeed, a �nite automaton accepts
some input u if at the end of the reading of u, the automaton reaches a �nal
state. Clearly, when generalizing to in�nite words, this accepting condition has
to be changed. For this reason, new accepting conditions have been introduced
in literature. For example, an in�nite word w is accepted by a �nite automaton
A under the Büchi acceptance condition if and only if there exists a run of A
which passes in�nitely often through a set of accepting states while reading w.
Indeed, this was introduced by Richard Büchi in the seminal work [1] in 1960.

Later on, David Muller characterized runs that pass through all elements of a
given set of accepting states and visit them in�nitely often [8]. Afterwards, more
acceptance conditions appeared in a series of papers [4,5,11,7,6]. Each of these
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works was trying to capture a particular semantic on the runs or to �ll some con-
ceptual gap. Acceptance conditions are selectors for runs of the automaton under
consideration. Of course, the set of selected runs is also deeply in�uenced by the
structural properties of the FA: deterministic vs. non-deterministic, complete vs.
non complete (see for instance [6]).

Each acceptance condition characterizes a class of languages. In [2], it is
proved that if the acceptance condition is de�nable in MSO (monadic second or-
der) logic then the class of languages it induces is ω-rational. However, more work
was necessary to �nd which was the overall picture i.e. which are the relations
between classes of languages induced by the acceptance conditions appeared in
literature so far. The well-known Borel hierarchy constitute the backbone of such
a picture. Classes in the hierarchy are ordered by set inclusion.

This paper continues the classi�cation work closing some open questions
concerning the positioning of the class of languages induced by CDFA(fin,=)
(i.e. languages characterized by runs that pass �nitely many times through all
the elements of a given set of �nal states, recognized by Complete Deterministic
Finite Automata). The motivation for a further study of the condition (fin,=)
is twofold. From one hand, this class is, in a sense, surprising. Indeed, it is as
high as the highest classes of the Borel hierachy but it is distinct from them.
The interest of such a result is to have examples of languages that have high
complexity but in which the complexity is not just determined by the topology
one de�nes over the words (the Cantor topology here) but the complexity is
determined by the intrinsic combinatorial complexity of the words themselves.

From the other hand, it is another step in the understanding of the theory
of formal speci�cation and veri�cation of daemon processes (non-terminating
processes). In this case, a run of the process is accepted only if it passes through
a �nite number of exceptions.

The paper also highlights an interesting phenomenon: the complexity class
can be greatly in�uenced by the fact that one considers the very �rst elements
of the paths (initial node) or not. In the sequel given an acceptance condition
(c,R), the version in which the initial node is considered is denoted (c′, R).

For example run is the set of states visited by the �nite automaton while
reading the input word, excluding the initial state; run′ is the same as run but
includes the initial state. By Proposition 21, one �nds that CDFA(fin,=) (
CDFA(fin′,=) (CDFA stands for complete deterministic �nite automata). As
a consequence CDFA(fin′,=) is even higher than CDFA(fin,=). The rest of
the paper is devoted in proving (or disproving) the inclusion relations wrt. all
previously known classes. The resulting hierarchy is illustrated in Figure 5.

Most of the proofs have been omitted due to a lack of space. They will appear
in the long version of this article.

2 Languages and automata

Let N denote the set of non-negative integers. For all i, j ∈ N, [i, j] is the set
{i, i+ 1, . . . , j}. For a set A, |A| denotes the cardinality of A and P (A) the
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powerset of A. An alphabet is a �nite set and a letter is an element of an alphabet.
Given an alphabet Σ, a word over Σ is a sequence of letters from Σ. Let Σ∗

and Σω denote the set of all �nite words and the set of all in�nite words over Σ,
respectively. Let Σ∞ denote Σ∗ ∪Σω. For a word u, |u| denotes the length of u
and |u|a denotes the number of occurrences of the letter a in u. The empty word
ε is the only word of length zero. For all words u ∈ Σ∗ and v ∈ Σ∞, uv denotes
the concatenation of u with v. For all word u ∈ Σ∞, for all 0 ≤ i ≤ j < |u|, the
word uiui+1 . . . uj is denoted by u[i,j].

A language is a subset of Σ∗, similarly an ω-language is a subset of Σω. For a
language L1 and for L2 ∈ Σ∞, L1L2 = {uv ∈ Σ∗ : u ∈ L1, v ∈ L2} denotes the
concatenation of L1 with L2. For a language L ⊆ Σ∗, let L0 = {ε}, Ln+1 = LnL
and L∗ =

⋃
n∈N Ln the Kleene star of L. For a language L, the in�nite iteration

of L is the ω-language Lω = {u0u1u2 · · · : ∀i ∈ N, ui ∈ Lr {ε}} .

The class of rational languages is the smallest class of languages containing
∅, all sets {a} (for a ∈ Σ) and which is closed under union, concatenation and
Kleene star operations. An ω-language L is ω-rational if there exist n ∈ N and
two families {Li} and {L′i} of n rational languages such that L =

⋃n−1
i=0 L′iLωi .

Let RAT denote the set of all ω-rational languages.

Rational languages and ω-rational languages are denoted by rational expres-
sions. For instance, for the alphabet Σ = {0, 1}, Σ∗1 denotes the language of
words ending with a 1 while (Σ∗1)ω and Σ∗(0ω + 1ω) denote the ω-languages of
words containing an in�nite number of 1's, and a �nite number of 0's or a �nite
number of 1's, respectively.

A �nite automaton (FA) is a tuple (Σ,Q, T, I,F) where Σ is an alphabet, Q
a �nite set of states, T ⊆ Q × Σ × Q is the set of transitions, I ⊆ Q is the set
of initial states and F ⊆ P (Q) is the acceptance table. A FA is a deterministic
�nite automaton (DFA) if |I| = 1 and |{q ∈ Q : (p, a, q) ∈ T}| ≤ 1 for all p ∈ Q,
a ∈ Σ. It is a complete �nite automaton (CFA) if |{q ∈ Q : (p, a, q) ∈ T}| ≥ 1
for all p ∈ Q, a ∈ Σ. A CDFA is a FA which is both deterministic and complete.

A CDFA induces a transition function δ : Q×Σ → Q such that for all p ∈ Q
and a ∈ Σ, δ(p, a) is the only state such that (p, a, δ(p, a)) ∈ T . The transition
function can be extended to a function δ′ : Q×Σ∗ → Q by de�ning for all p ∈ Q,
δ′(p, ε) = p and for all p ∈ Q, a ∈ Σ and u ∈ Σ∗, δ′(p, au) = δ′(δ(p, a), u). We
usually make no distinction between δ and δ′.

If I = {q0} for some state q0 ∈ Q, we shall write (Σ,Q, T, q0,F) instead of
(Σ,Q, T, I,F). Similarly, if F = {F} or F = {{f}}, we shall write (Σ,Q, T, I, F )
or (Σ,Q, T, I, f) instead of (Σ,Q, T, I,F), respectively.

An in�nite path in a FA A = (Σ,Q, T, I,F) is a sequence (pi, xi)i∈N such
that (pi, xi, pi+1) ∈ T for all i ∈ N. The (in�nite) word x is the label of the path.
A �nite path from p to q is a sequence (pi, ui)i∈[0,n] for some n such that p0 = p,
for all i ∈ [0, n− 1], (pi, ui, pi+1) ∈ T and (pn, un, q) ∈ T . The (�nite) word u is
the label of the path. A path is initial if p0 ∈ I. A state q is accessible if there
exists an initial path to q and A is accessible if all its states are. A loop is a
path from a state to the same state. The FA A is normalized if it is accessible,
I = {q0} for some q0 ∈ Q and q0 does not belong to a loop.
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3 Acceptance conditions, classes of languages and

topology

De�nition 1. Let A = (Σ,Q, T, I,F) be a FA and p = (pi, xi)i∈N a path in A.
De�ne the sets

� runA(p) = {q ∈ Q : ∃i > 0, pi = q},
� run′A(p) = {q ∈ Q : ∃i ≥ 1, pi = q},
� infA(p) = {q ∈ Q : ∀i > 0,∃j ≥ i, pj = q},
� finA(p) = runA(p) r infA(p),
� fin′A(p) = run′A(p) r infA(p),
� ninfA(p) = Qr infA(p)

as the sets of states appearing at least one time (counting or not the �rst state of
the path), in�nitely many times, �nitely many times but at least once (counting
or not the �rst state of the path), and either �nitely many times including never
in p, respectively.

An acceptance condition for A is a subset of all the initial in�nite paths of
A. The paths inside such a subset are called accepting paths. Let A be a FA
and cond be an acceptance condition for A, a word x is accepted by A (under
condition cond) if and only if it is the label of some accepting path.

Let u be the binary relation over sets such that for all sets A and B, A uB
if and only if A ∩B 6= ∅.

In this paper, we consider acceptance conditions induced by pairs (c,R) ∈
{run, run′, inf, fin, fin′, ninf} × {u,⊆,=}. A pair cond = (c,R) de�nes an
acceptance condition condA on an automaton A = (Σ,Q, T, I,F) as follows: an
initial in�nite path p = (pi, xi)i∈N is accepting if and only if there exists a set
F ∈ F such that cA(p) R F . We denote by LcondA the language accepted by A
under the acceptance condition condA, i.e., the set of all words accepted by A
under condA.

Remark 2. For acceptance conditions which use the relation u, we can assume
that the acceptance table is reduced to one set of states, taking, if necessary, the
union of all sets in the acceptance table.

De�nition 3. For all pairs cond ∈ {run, run′, inf, fin, fin′, ninf}× {u,⊆,=}
and for all �nite alphabets Σ, de�ne the following sets

� FA(Σ)(cond) =
{
LcondA , A is a FA on Σ

}
,

� DFA(Σ)(cond) =
{
LcondA , A is a DFA on Σ

}
,

� CFA(Σ)(cond) =
{
LcondA , A is a CFA on Σ

}
,

� CDFA(Σ)(cond) =
{
LcondA , A is a CDFA on Σ

}
as the classes of ω-languages on Σ accepted by FA, DFA, CFA, and CDFA,
respectively, under the acceptance condition derived by cond. When it is not
confusing, we omit to precise the alphabet in these notations.
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When Σ is endowed with discrete topology and Σω with the induced prod-
uct topology, let F, G, Fσ and Gδ be the collections of all closed sets, open sets,
countable unions of closed set and countable intersections of open sets, respec-
tively. For any pair A,B of collections of sets, denote by B (A), A ∆ B, and AR

the Boolean closure of A, the set {U ∩ V : U ∈ A, V ∈ B} and the set A∩ RAT,
respectively. These, indeed, are the lower classes of the Borel hierarchy. For more
on this subject we refer the reader to [12] or [9], for instance.

Some of the acceptance conditions derived by pairs (c,R) have been studied
in the literature (see [1,8,4,5,11,7,6,10,3]). It is known that all the classes of
languages induced are subclasses of RAT because the acceptance conditions are
MSO-de�nable, see [1,2]. The known inclusions are depicted in Figure 5.

In the sequel, we deal with languages sharing the same structure. For an
alphabet Σ, a ∈ Σ, k ≥ 0 and n > 0, we denote the language

{x ∈ Σω : |x|a = k (mod n)}

by LΣ,ak,n and L̃Σ,ak,n denotes the language LΣ,ak,n + (Σ∗a)ω.

4 Some relations between run and run′, and fin and fin′

The following lemma is immediate.

Lemma 4. Let cond ∈ {run, inf, fin, ninf} × {u,⊆,=}. If a language L is
recognized by an automaton under condition cond, then it is recognized by a
normalized automaton which is complete (resp. deterministic) if the initial one
is complete (resp. deterministic) under condition cond.

Corollary 5. Let (c,R) ∈ {run, fin} × {u,⊆,=}. The class of languages in-
duced by (c,R) is included in the respective class of languages induced by (c′,R).

Lemma 6. Let R ∈ {u,⊆,=} and cond = (run′,R). If a language L is recog-
nized by an automaton under condition cond, then it is recognized by a normalized
automaton which is complete (resp. deterministic) if the initial one is complete
(resp. deterministic) under condition cond.

Proposition 7. Let R ∈ {u,⊆,=}. The conditions (run,R) and (run′,R) in-
duce the same classes of languages.

We will see later that Proposition 7 has no equivalence for condition based
on fin. In general, the inclusion of classes induced by fin in the respective class
induced by fin′ is strict.

From now on, without loss of generality, we assume that Σ is an alphabet
containing {0, 1} and we denote the set Σ r {1} by Σ0 and the set Σ r {0} by
Σ1.
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5 The acceptance conditions (fin,u) and (fin′,u)

The acceptance condition (fin,u) has already been studied in [6]. In this paper,
we prove that the condition (fin′,u) de�nes new classes for deterministic or
complete automata.

Proposition 8. The class FA(fin′,u) is included in the class FA(fin,u).

Proposition 9. The language LΣ,10,2 is in CDFA(fin′,u) but not in CFA(fin,u)
or in DFA(fin,u).

Proof. Remark that LΣ,10,2 = L(fin′,u)
A for the CDFA A = (Σ, {q0, q1} , T, q0, q1)

where (p, a, q) ∈ T if and only if a = 1 and p 6= q or a 6= 1 and p = q.

For the sake of argument, assume that LΣ,10,2 = L(fin,u)
A for a CFA A. The

word x = 0ω is in LΣ,10,2 so there exists an accepting path p = (pi, xi)i∈N in A
under (fin,u). Let k > 0 such that pk ∈ F is visited �nitely often in p. Let
y = 0k10ω, y is not in L, then all paths starting from pk and labeled by 10ω visit
pk in�nitely often. Therefore, there exists a loop on pk labeled by 10k

′
for some

k′ ∈ N. Inserting this loop one time in the �rst path, we �nd an accepting path
labeled by y, this is a contradiction.

For the sake of argument, assume that LΣ,10,2 = L(fin,u)
A for a DFA A. Without

loss of generality, we can assume that A is accessible. As for all u ∈ Σ∗, u0ω or
u10ω is in LΣ,10,2 , there exists a �nite initial path labeled by u and A is complete.
We have just shown that this is not possible. ut

Theorem 10. The following relations hold for the classes induced by (fin′,u):

1. CDFA(fin,u) ( CDFA(fin′,u), DFA(fin,u) ( DFA(fin′,u),

CFA(fin,u) ( CFA(fin′,u),

2. FA(fin,u) = FA(fin′,u),

3. CDFA(fin′,u) ( CFA(fin′,u) ( FA(fin′,u),

4. CDFA(fin′,u) ( DFA(fin′,u) ( FA(fin′,u).

There are no other relations for the classes induced by (fin′,u) except those
obtained by transitivity with previously known classes.

Proof. The �rst point follows from Corollary 5 and Proposition 9. The equality
FA(fin,u) = FA(fin′,u) holds from Corollary 5 and Proposition 8. The in-
comparability of DFA(fin′,u) with CFA(fin′,u) and the fact there is no other
inclusions come from results of [6]. Indeed, at the one hand, FR ⊆ DFA(fin,u)
but FR 6⊆ CFA(fin′,u). And, at the other hand, the language Σ∗10Σω+Σ∗0ω is
in (CDFA(ninf,u) ∩CFA(fin,u)) r DFA(fin′,u). Finally, the language Σ∗0ω

is in CDFA(fin,u) ∩ (FR
σ r GR

δ ). ut
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6 The acceptance conditions (fin,⊆) and (fin′,⊆)

In [3], it is proved that an automaton using the acceptance condition (fin,⊆) and
(fin,=) can be completed without changing the recognized language. It follows
that the completeness does not matter for classes induced by those conditions.
The same holds for (fin′,⊆) and (fin′,=).

Proposition 11. The class F is included in CDFA(fin,⊆) and the class Fσ∩Gδ
is included in CDFA(fin,=).

Proposition 12 ([2]). The class CDFA(fin′,⊆) is included in Gδ.

Proposition 13. The language (Σ∗1)ω is in CDFA(fin,⊆) r FR
σ.

Lemma 14. Let L be a language in FA(fin,⊆) (resp. in FA(fin′,⊆)) such that
there exists a, b ∈ Σ, u ∈ Σ∗ and for all k ∈ N, bakuaω ∈ L (resp. akuaω ∈ L).
Then baω (resp. aω) is in L.

Proof. Let A = (Σ,Q, T, I,F) such that L = L(fin,⊆)
A (resp. L = L(fin′,⊆)

A ). Let
n = |Q|, as x = banuaω (resp. x = anuaω) is in L, there exists an accepting
path p = (pi, xi)i∈N in A. There exists k, k′ such that 1 ≤ k < k′ ≤ n + 1
(resp. 0 ≤ k < k′ ≤ n) and pk = pk′ . Choose k minimal. We de�ne a path
p′ = (p′i, yi)i∈N in A where y = baω (resp. y = aω), for all i ∈ [0, k], p′i = pi
and for all i ∈ N, p′k+i = pk+(i (mod k′−k)). If p

′ is accepting, we can conclude.
If not, then, by minimality of k, fin(p′) = {pi : i ∈ [1, k − 1]} (resp. fin′(p′) =
{pi : i ∈ [0, k − 1]}) is not included in any F ∈ F . But as p is accepting, there
exists F ∈ F such that fin(p) ⊆ F (resp. fin′(p) ⊆ F ). That means there
exists q ∈ fin(p′) (resp. q ∈ fin′(p′)) such that q ∈ inf(p). Let k0 ∈ [1, k − 1]
(resp. k0 ∈ [0, k − 1]) be minimal such that pk0 ∈ inf(p). Then by de�nition
of inf(p), we can �nd an index k′0 such that pk′0 = pk0 , k

′
0 ≥ |u| + n + 1 and

for all i ≥ k′0, pi ∈ inf(p). We de�ne a path p′′ = (p′′i , yi)i∈N in A where for
all i ∈ [0, k0], p′′i = pi and for all i ∈ N, p′k0+i = pk′0+i. By minimality of k0
and by de�nition of k′0, fin(p′′) = {pi : i ∈ [1, k0 − 1]} ⊆ fin(p) ⊆ F (resp.
fin′(p′′) = {pi : i ∈ [0, k0 − 1]} ⊆ fin′(p) ⊆ F ) and p′′ is an accepting path
labeled by y. ut

Proposition 15. The language Σ∗1Σω is in CDFA(ninf,u)∩GRrFA(fin′,⊆).

Proposition 16. The language L̃Σ,10,2 is in CDFA(fin′,⊆) r FA(fin,⊆).

Proposition 17. The language L = Σ0(L̃Σ,10,2 + L̃Σ,10,3 ) is in FA(fin,⊆) but not
in CDFA(fin′,⊆).

Proof. We have L = L(fin,⊆)
A for the FA A = (Σ, {q0, q1, q2, q3, q4, q5} , T, q0,

{{q2} , {q4, q5}}) where T is depicted on Figure 1. For the sake of argument,

assume that L = L(fin′,⊆)
A for a CDFA A = (Σ,Q, T, q0,F). Let δ : Q → Q be

the transition function of A.
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We �rst show that if u and v are two words such that u is a pre�x of v
starting by a 0 and δ(q0, u) = δ(q0, v) then |u|1 = |v|1 (mod 6). Let us denote
k = |u|1 (mod 6) and k′ = |v|1 (mod 6). If x is an ω-word, then the set of states
visited �nitely often by the path labeled by ux is included in the set of states
visited �nitely often by the path labeled by vx. Then, whenever ux is rejected
for some x, vx is rejected. We take x = 1(5−k)0ω (resp. x = 1(7−k)0ω), as ux
is not in the language, it is rejected and vx is also rejected. We deduce that
|vx|1 = k′ + 5 − k (resp. |vx|1 = k′ + 7 − k) is congruent to 1 or 5 modulo
6. This implies that k = k′. Let n = |Q| and x = 010n10ω. As x is in L,
there exists F ∈ F such that fin′(p) ⊆ F where p is the path labeled by x.
Let S = {q0} ∪

{
δ(q0, x[0,k]) : k ∈ [0, n+ 1]

}
, according to the above lemma,

S ⊆ fin′(p). Moreover, we can �nd two integers i < j such that δ(q0, 010i) =
δ(q0, 010j), then the path p′ labeled by y = 010ω is such that run′(p′) = S.
Finally, fin′(p′) ⊆ run′(p′) = S ⊆ fin′(p) ⊆ F and y is recognized by A but
y 6∈ L. We get a contradiction. ut

q0 q1 q2q3q4q5
Σ0Σ0

Σ0

1

Σ0

1

Σ0

1

Σ0

1

Σ0

1

Fig. 1. A FA recognizing Σ0(L̃Σ,10,2 + L̃Σ,10,3 ) under the condition (fin,⊆).

Proposition 18. The language L = Σ(11Σ∗ + 0)ω is in FA(fin,⊆) r Gδ.

Proof. We have L = L(fin,⊆)
A for the FA A = (Σ, {q0, q1, q2, q3} , T, q0, q1) where

T is depicted on Figure 2. It is straightforward to prove that L is not in Gδ. ut

q0 q1 q2 q3
Σ

0

1

1

1

Σ
Σ

Fig. 2. A FA recognizing Σ(11Σ∗ + 0)ω under the condition (fin,⊆).

Theorem 19. The classes induced by (fin,⊆) and (fin′,⊆) satisfy the follow-
ing relations:

1. F ( CDFA(fin,⊆) ( CDFA(fin′,⊆) ( Gδ,
2. CDFA(fin,⊆) ( FA(fin,⊆) and CDFA(fin′,⊆) ( FA(fin′,⊆),
3. FA(fin,⊆) ( FA(fin′,⊆).

There is no other relation for the classes induced by (fin,⊆) and (fin′,⊆) except
those obtained by transitivity with previously known classes.
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Proof. The inclusions of the �rst point comes from the Proposition 11, Corol-
lary 5 and Proposition 12, respectively. By Propositions 13, 16 and 15, respec-
tively, the inclusions are strict. The inclusions of the second point are clear and
by Proposition 17 it is strict. The inclusions of the third point are a consequence
of the Corollary 5 and by Proposition 16 they are strict.

The incomparability with the other known classes comes from Proposition 15
which proves that G and CDFA(ninf,u) are not subclasses of FA(fin′,⊆) and
from Propositions 13 and 18 which prove that CDFA(fin,⊆) is not a subclass
of Fσ and FA(fin,⊆) is not a subclass of Gδ, respectively. ut

7 The acceptance condition (fin,=) and (fin′,=)

In the previous section we have proved that the class CFA(fin,⊆) is pretty high
in the hierarchy. However, it is incomparable with FR

σ∩GR
δ and it does not contain

any open language. In this section, we are going to show two more classes which
have nicer properties.

Lemma 20. Let a, b ∈ Σ be two distinct letters and L a language such that

L∩ {a, b}∗ bω = L{a,b},a0,2 . If L = L(fin,=)
A or L = L(fin′,=)

A for a CDFA A then A
has a loop on its initial state labeled by bk for some k > 0.

Proof. Let A = (Σ,Q, T, q0,F) be a DFA such that L = L(fin,=)
A or L =

L(fin′,=)
A . For the sake of argument, assume that q0 does not belong to a loop

labeled by b's. Let δ be the transition function of A. For all word x, denote by
px the path in A labeled by the word x.

De�ne a sequence of integers (ki)i∈N such that, denoting the �nite word
bk0abk1a . . . abki by ui, for all i ∈ N, δ(q0, ui) does not belong to a loop labeled
by b's but δ(q0, ui0) does. As q0 is not on a loop labeled by b's, we de�ne k0 as

max
{
j ∈ N : ∀j′ > j, δ(q0, b

j′) 6= δ(q0, b
j)
}
. Assume that ki is de�ned for some

i ∈ N. Then, the state δ(q0, uia) does not belong to a loop labeled by b's. Indeed,
otherwise the words x = uib

ω and y = uiab
ω verify finA(px) = finA(py) and

fin′A(px) = fin′A(py) (in both cases, the states which appear in those sets are
states reached by reading ui in A counting or not the �rst state). This is not
possible because only one of this words is accepted by A. We de�ne ki+1 as

max
{
j ∈ N : ∀j′ > j, δ(q0, ui10j

′
) 6= δ(q0, ui10j)

}
.

Since Q is �nite, there exists i < j such that δ(q0, ui) = δ(q0, uj). The words
x = ujb

ω and y = ujab
ω verify finA(px) = finA(py) and fin′A(px) = fin′A(py)

(see Figure 3) but as above only one of these words is accepted by A. We get a
contradiction. ut

Proposition 21. The language LΣ,10,2 is in CDFA(fin′,=) r CDFA(fin,=).

Proof. We have LΣ,10,2 = L(fin′,=)
A for the CDFA A = (Σ, {q0, q1, q2} , T, q0,

{∅, {q0, q1}}) where (p, a, q) ∈ T if and only if a 6= 1 and p = q or a = 1
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bk0 abk1

b

abk2

b

abk3

b

abkj−1

b

bk
′
0 bk

′
1 bk

′
2 bk

′
j−1

abkj

Fig. 3. A �gure illustrating the construction in Lemma 20 with i = 1.

and (p, q) ∈ {(q0, q1), (q1, q2), (q2, q1)}. If LΣ,10,2 would be recognized by a CDFA
B under condition (fin,=), B could be assumed normalized by Lemma 4. But

as LΣ,10,2 ∩{0, 1}
∗

0ω = L{0,1},10,2 , by Lemma 20, this automaton should have a loop

on its initial state. This is not possible and LΣ,10,2 is not in CDFA(fin,=). ut

Proposition 22. The language L = LΣ,00,2 + LΣ,10,2 is not in CDFA(fin′,=).

Proof. For the sake of argument, assume that L = L(fin′,=)
A for a CDFA A =

(Σ,Q, T, q0, F ). As L∩{0, 1}∗ 0ω = LΣ,10,2 , by Lemma 20, there exists k such that

there exists a loop on q0 labeled by 0k. Symmetrically, there exists k′ such that
there exists a loop on q0 labeled by 1k

′
. As 0ω ∈ L, ∅ ∈ F . The path p labeled

by x = (0k1k
′
)ω veri�es fin′(p) = ∅ ∈ F . Then x is recognized but x is not in

L. We have a contradiction. ut

Remark 23. Using similar methods as in the proof of Lemma 20 and Proposi-
tion 22, we can prove that the language Σ(LΣ,01,2 +LΣ,11,2 ) is not in CDFA(fin′,=).

Since CDFA(fin′,=) is clearly closed under complementation, Σ(L̃Σ,00,2 ∩ L̃
Σ,1
0,2 )

is not in CDFA(fin′,=).

Proposition 24. The language L = LΣ,01,2 + LΣ,11,2 is in CFA(fin,u) but not in
CDFA(fin′,=).

Proof. By Proposition 9 and using the non-determinism, it is clear that L is in
CFA(fin,u). By Remark 23, L 6∈ CDFA(fin′,=). ut

Proposition 25. The language L = Σ(L̃Σ,00,2 ∩ L̃
Σ,1
0,2 ) is in FA(fin,⊆) but not

in CDFA(fin′,=).

Proof. We have L = L(fin,⊆)
A for the CFA A = (Σ, {q0, q1, q2, q3, q4, q5, q6, q7} ,

T, q0, {q2, q3, q4, q6}) where T is depicted in Figure 4 (here Σ̄ means Σr {0, 1}).
This automaton is split in two disjoint parts. A path which visits the state q5 is
successful if and only if q5 (and then q7) is visited an in�nite number of times,
if and only if its label contains an in�nite number of occurrences of the pattern
01, if and only if its label contains in in�nite number of a's and b's.

A path visiting q1 is successful if and only if q1 is visited an in�nite number of
times. Let p be a successful path visiting q1, let ax be its label where a ∈ Σ and
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x ∈ Σω . If |x|0 (resp. |x|1) is �nite, the set infA(p) is included in {q1, q2} or in
{q3, q4} (resp., in {q1, q3} or in {q2, q4}). Since p is successful, q1 is in infA(p),
therefore infA(p) is included in {q1, q2} (resp., in {q1, q3}) and |x|0 (resp., |x|1)
is even. The converse is clear. By Remark 23, L 6∈ CDFA(fin′,=). ut

q0 q1 q2

q3 q4

q5q6

q7

ΣΣ

Σ̄

1

0

Σ̄

1
0

Σ̄

1
0

Σ̄

1

0

Σ1

0

Σ1

0

Σ0

1

Fig. 4. A FA recognizing Σ(L̃Σ,00,2 ∩ L̃
Σ,1
0,2 ) under the condition (fin,⊆).

8 Conclusions

This paper is a step further in the study of the hierarchy of ω-languages induced
by accepting conditions found in the literature. Figure 5 illustrates the hierarchy
and highlights the contribution of this paper.

This research can be continued along several directions. First of all, some
inclusions of classes induced by (ninf,u) into CDFA(fin′,=) are still open.

Secondly, in [2], the authors proved that a slight generalization of classical
Büchi result: all second order de�nable accepting conditions induce ω-rational
languages. It would be very interesting to study what is the impact of weaker
fragments of logic over the classi�cation provided here.

Another promising research direction considers the closure properties of the
newly found classes of ω-languages.

Finally, the decidability of the new classes is certainly a promising research
direction.
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