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Abstract

This paper studies the existing links between two approaches of Independent Component
Analysis (ICA) – FastICA/projection pursuit and Infomax/maximum likelihood estima-
tion – and the Sparse Component Analysis (SCA), to tackle Blind Source Separation
(BSS) of the instantaneous mixtures problem. While ICA methods suit particularly well
for (over)determined and noiseless mixtures, SCA has demonstrated its robustness to
noise and its ability to deal with underdetermined mixtures. Using the ”synthesis” point
of view to reformulate ICA methods as an optimization problem, we propose a new opti-
mization framework, which encompasses both approaches. We show that the algorithms
developed to minimize the proposed functional built on SCA, but imposing a numerical
decorrelation constraint on the sources, aims to improve the Signal to Inference Ratio
(SIR) of the estimated sources without degrading the Signal to Distortion Ratio (SDR).

1. Introduction

The blind source separation (BSS) of instantaneous mixtures appears in various ap-
plications such as speech processing [1], biomedical processing [2] and digital commu-
nications [3]. The BSS problem is also related to the independent component analysis
(ICA). This family of methods introduced in 1984 [4] has been developed to tackle the
following linear problem [5]: given M observations of size T , X ∈ RM×T , estimate the
mixing matrix A ∈ RM×N and the N sources, S ∈ RN×T , such that

X = AS + E , (1)

with E ∈ RM×T some additive noise.
To tackle this problem, two families of methods are mainly used: independent com-

ponent analysis (ICA) [6] and sparse component analysis (SCA) [7]. The general idea
of ICA is to estimate an unmixing matrix W = A−1 by minimizing a contrast function
measuring the dependencies between the sources. This unmixing matrix is then used to
estimate the source signals by S = WX. ICA methods have been applied with success in
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a wide range of applications, such as electroencephalography (EEG) [8], functional mag-
netic resonance imaging (fMRI) [9, 10], and audio source separation [11]. This family of
method is mainly used for noiseless (over)determined mixtures, event if some extensions
exist to deal with noisy or underdetermined mixtures. One can refer to [6] for a deep
presentation of ICA for BSS. The general idea of SCA is to estimate the mixing matrix
A and the sources S, assuming that the sources admit a sparse representation. SCA was
introduced to deal with the underdetermined mixtures where the mixing matrix is first
estimated, before estimating the sources [12, 13, 14]. It is also the starting point of time-
frequency techniques for BSS applied to audio signals [15, 16]. SCA was also employed
for (over)determined mixtures in imaging thanks to the Generalized Morphological Com-
ponent Analysis (GMCA) [17], where an alternating minimization strategy is employed
to estimate A and S. In [18], a Bayesian model is proposed to estimate the sources in the
context of SCA after providing an estimate of the (possibily underdetermined) mixing
matrix, allowing sparser estimates than the classical `1 penalization used in [12, 17].

Recently, it was claimed in [19] that two of the most used ICA methods for fMRI
(Infomax and FastICA, see e.g. [6]) separate sparse sources rather than independent
sources, leading to the conclusion that the mathematical design of better analysis tools
for brain fMRI should emphasize on other characteristics, such as sparsity, rather than
independence. One given explanation is that the sparsity-based `1 minimization can
be connected with InfoMax and FastICA because both of these ICA methods implicitly
assume that the independent components have a generalized Gaussian distribution, which
includes the sparse sources modeled by `1 minimization. This conclusion is balanced
in [20] where the authors show that these two algorithms are indeed relevant to the
recovery of independent fMRI sources.

Contributions and outline. As an extension of our previous work [21], we consider in this
paper the BSS problem (1) in general: (over)determined and underdetermined cases,
possibly with an additive white Gaussian noise. One of the main contribution of this
article is to show that Infomax and FastICA can indeed be reformulated as a SCA
problem. The contributions of this article are fourfold:

1. We study existing algorithms based on SCA, using a maximum a posteriori (MAP)
approach. We propose a convergent algorithm based on proximal alternating lin-
earized method (PALM) [22], which is more robust in practice, in the sense that it
obtains acceptable results in the underdetermined case.

2. We provide a discussion on the formal links between two ICA approaches (Infomax
and FastICA) and SCA approaches.

3. We propose a new framework exploiting sparsity and time decorrelation of the
sources which generalizes ICA and SCA for BSS. We show that previously studied
approaches are particular cases of this general formulation. Two algorithms are
proposed to exploit sparsity and time decorrelation.

4. We compare all the three proposed algorithms on synthetic instantaneous audio
mixtures. Even if instantaneous mixtures is not the most suitable model for audio
signals [23], this framework allows to evaluate the separation results with objective
measures, and subjectively by listening. The experiments show that the proposed
framework outperforms existing algorithms in the underdetermined case, and can
be more robust to noise in the (over)determined case. Moreover, the proposed
framework is robust to the chosen number of sources to estimate.
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The rest of the paper is as follow. Section 2 presents briefly the concept of ICA and
SCA, as well as their state-of-the-art algorithms. In Section 3 we provide a discussion
on the links between ICA and SCA, and we propose a new framework for generalizing
ICA and SCA with SICA (Sparse Independant Component Analysis). We provide three
new algorithms for SCA and SICA in Section 4. Experiments are done in Section 5 and
Section 6 concludes the paper.

2. Blind Source Separation: ICA vs SCA

In this section, we give a brief introduction of the state-of-the-art methods based on
SCA and ICA. From now and for the rest of the paper, we denote by {ϕk ∈ RT }Kk=1

a dictionary of K waveforms (such as wavelets or time-frequency atoms)1 and Φ =
[ϕ1, . . . ,ϕK ] ∈ RT×K the associated matrix. By a slight abuse of notation, the dictionary
{ϕk ∈ RT }Kk=1 will be denoted by its associated matrix Φ.

2.1. Sparse Component Analysis and BSS

Sparsity by analysis. Applying Φ on the two sides of the general mixing model (1), it
becomes

XΦ = ASΦ + EΦ, (2)

X̃ = AS̃ + Ẽ, (3)

where X̃ = XΦ, S̃ = SΦ and Ẽ = EΦ are the analysis coefficients of X, S and E,
respectively, in the transform domain.

As mentioned in the introduction, this model is exploited in particular to deal with
the underdetermined mixtures where the mixing matrix is first estimated by exploiting
the sparsity of S̃, before estimating the sources [12, 15, 13]. In [15], the authors exploit
the sparsity of the sources to formulate the hypothesis of the disjointness of the sources
in a time-frequency dictionary. This hypothesis has been further relaxed in [14, 32, 16].
Nevertheless, when the family of waveforms is overcomplete, several problems appear:
first, if the noise E is assumed to be white Gaussian in the time domain, Ẽ becomes corre-
lated in the transform domain (its density is even a degenerated normal law). Moreover,
the estimated coefficients S̃ used to synthesize the sources do not necessarily belong to
the image of the operator Φ, thus should not be considered as analysis coefficients. That
is, solving (3) without the constraint S̃ = SΦ is not equivalent to solving (2).

Sparsity by synthesis. A simple way to deal with the drawbacks of the analysis operator
is to use the synthesis modeling of the SCA [7]:

X = AS + E = AαΦ∗ + E, (4)

where α ∈ RN×K are the synthesis coefficients of S in the dictionary Φ, assumed to be
sparse. Using the synthesis point of view was first introduced in the seminal paper of the
Basis Pursuit [33], in order to exploit sparsity. The problem is then to estimate the mixing

1We stick to the real case for the sake of simplicity, but the dictionary can be complex.
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matrix A and the synthesis coefficients α, the sources being synthesized by S = αΦ∗.
Using (4), [26] proposes to estimate A and α jointly using an alternating optimization
strategy based on the MAP. Denoting by p(x) the probability density function (pdf) of
a random variable x, the proposed MAP for BSS reads:

argmax
A,α

p(A,α|X) = argmin
A,α

− log(p(A,α|X)) (5)

= argmin
A,α

− log(p(X|A,α))− log(p(A))− log(p(α)), (6)

where p(A) and p(α) are respectively the priors of A and α.
In [26], the chosen priors are the following:

• The noise is white Gaussian: − log(p(A,α|X)) ∝ 1
2‖X−AS‖2F .

• A Gaussian prior on A: − log(p(A)) ∝ µ
2 ‖A‖

2
F , µ > 0.

• A generalized Gaussian prior on the synthesis coefficients:

− log(p(α)) ∝ λ

γ

∑
n,k

|αn(k)|γ , 0 < γ ≤ 1 , λ > 0 .

where αn(k) denotes the k-th element of the vector αn ∈ RK of the synthesis coefficients
of the n-th source. ‖ · ‖F denotes the Frobenius norm. Generalized Gaussian prior with
0 < γ ≤ 1 allows one to favor sparse coefficients [26] and this MAP approach using
sparsity is also the starting point of the generalized morphological component analysis
(GMCA) [17] developed for images using wavelet basis. One of the main advantages of
such an approach, is its ability to deal with the additive noise compared to simple ICA
approaches (see the discussion in [17]). More complex prior can be used on the synthesis
coefficients to get sparser estimate (see [18]).

2.1.1. The optimization framework

The joint estimation of the mixing matrix A and the synthesis coefficients α in (4)
can be done by solving the optimization problem of the following functional, which is
equivalent to the MAP of (6) [26]:

min
A,α

Γ(α,A) = min
A,α

1

2
‖X−AαΦ∗‖2F + λh(α) + g(A), (7)

where

• 1
2‖X−AαΦ∗‖2F is the data fitting term corresponding to the white Gaussian noise
prior. This data fitting term will be denoted sometimes by Q(α,A) to simplify
notations.

• h is the regularization term employed to favor sparse solution. A popular choice is
the `1 norm [34]: h(α) = ‖α‖1 =

∑
n,k |αn(k)|.
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• λ > 0 is a hyperparameter balancing between the data term and the regularization
term.

• g contains constraints on A to avoid trivial solutions and limits the scaling ambi-
guity problem. A common choice for g is the indicator function of the unit circle:

g(A) = ıC(A) =

{
0 if ‖an‖ = 1, n = 1, 2, . . . , N
+∞ otherwise,

(8)

where an is the n-th column of A.

The functional (7) is not convex, and then suffers from local minima. For a fixed A,
with the choice h(α) = ‖α‖1, the functional is convex in α. For a fixed α, and denoting
by ıB(A) the indicator function of the unit ball, the choice g(A) = ıC(A) instead of
ıB(A) makes the functional not convex. However, algorithms remain as robust as with
the choice ıB(A) in practice. We stick to g(A) = ıC(A) in the rest of the paper, as it
appears to be the most common choice in the literature.

2.1.2. State-of-the-art algorithms

When the `1 norm is chosen to favor sparse solutions, the optimization problem (7)
is non-differentiable and non-convex in (A,α). In [26], the authors proposed to use a
smooth relaxation of the `1 norm to solve the problem. However, [35] shows that the
smooth technique has several drawbacks, mainly because of the choice of the smoothing
parameter which balances between the convergence rate and the approximation level.
It is also pointed out in [26] that the separation results are sensitive to initialization.
In [36], the GMCA was developed based on an alternating optimization strategy to solve
the problem for image separation in (over)determined setting. They first perform the
optimization with respect to the signal and then with respect to the mixing matrix fol-
lowed by a normalization step. One limitation of GMCA is that this block-coordinate
descend-like algorithm does not have any convergence proof because of the extra normal-
ization step. It is also mentioned in [36] that GMCA does not work in underdetermined
case.

2.2. ICA in a nutshell

ICA was first developed in noiseless scenarios for determined mixtures (M = N) [6]:

X = AS. (9)

As the sources S are assumed to be independent, ICA methods imply the uncorre-
lation constraint E(s(t)s(τ)) = δ(t − τ), where s(t) ∈ RN denotes the vector of sources
at the time t. In practice, as the number of samples are important, this constraint
leads to the numerical decorrelation: SST = IN , where IN is the identity matrix of size
N × N . Thus, the first step of ICA method is often a whitening step on the mixtures
matrix X. In this section, we suppose that the mixture matrix verifies XXT = IM .
Consequently, in the considered ICA methods, the unmixing matrix W must satisfy
WWT = WTW = IN .
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ICA in a transform domain. A fundamental hypothesis of ICA, is that at most one
source can be Gaussian [6]. In order to fulfill this assumption, it is usual to consider the
mixing model (9) in a transform domain such as time-frequency or time-scale domain.

Using the dictionary Φ, the mixing model (9) becomes in the transform domain:

XΦ = ASΦ,

X̃ = AS̃, (10)

where X̃ = XΦ and S̃ = SΦ are the analysis coefficients of X and S, respectively. ICA in
the transform domain has been proposed for image processing [24] with wavelets, audio
source separation with the Short Time Fourier Transform (STFT) [11] and fMRI [25]
where a dictionary learning strategy is used to choose the transform domain.

We present in this subection two ICA approaches: maximum likelihood/Infomax and
FastICA/projection pursuit, which are the two ICA methods discussed in [19]. We show
that these two methods can be reformulated as an optimization problem to estimate A
and S, involving a sparse regularization term. We then propose a new functional to
encompass these ICA approaches and SCA, allowing us to deal with noisy mixtures as
well as underdetermined mixtures.

2.2.1. ICA based on Infomax/Maximum likelihood estimation

These methods aim to estimate W by maximizing the amount of mutual information
or the likelihood of the model. Both lead to [6, 26]:

max
W

E

(
N∑
n=1

log
(
pn(wT

nX)
))

+K log(|det W|), (11)

with pn the probability density function (pdf) of the independent components, under the
orthogonality constraint on W: WWT = WTW = I, wn being the column vector that
contains the n-th row of the matrix W.

An important point of [26] is the equivalence of their proposed optimization approach
(encompassed by (7)) and the problem (11) when Φ is an orthogonal basis. In such a
case, the synthesis coefficients α such that S = αΦ∗ and the analysis coefficients S̃ are
equal. Then, one has

X̃ = AS̃ = Aα. (12)

Denoting by W = A−1, (12) becomes

WX̃ = S̃ = α. (13)

Then, by re-injecting (13) into (7), the optimization becomes

min
S̃,W

1

2
‖WX̃− S̃‖2F + λh(S̃) + g(W) . (14)

With the choices g(W) = −K log(|det W|) and h(S̃) = h(WT X̃) = E
(

N∑
n=1
− log

(
pn(wT

nX)
))

,

one recovers the objective (11) in the noiseless scenario WX̃ = S̃.
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However, as already stressed in the introduction, there is no warranty to recover
”true” analysis coefficients S̃ such that S verifyes S̃ = SΦ unless if Φ is an orthogonal
basis.

2.2.2. ICA based on projection pursuit/FastICA

FastICA/projection pursuit methods aim to identify the N components of the mix-
ture, by estimating the weight vectors W which maximize a measure of non-gaussianity
and assuring the numerical decorrelation of the sources SST = IN [6]. That is, one can
reformulate ICA by projection pursuit as:

max
W

∑
n

J(wT
nX) s.t WWT = WTW = IN , (15)

where J is a measure of non-gaussianity. By a simple change of variable, one can refor-
mulate (15) as:

max
A,S

∑
n

J(sn) s.t. SST = IN and X = AS. (16)

A possible choice for J is the kurtosis of the coefficients. For a centered variable, it is
equivalent to maximize:

J(S) =
∑
n

J(sn) =

N∑
n=1

∑
t |sn(t)|4

(
∑
t |sn(t)|2)

2 .

where sn(t) ∈ R is the n-th source at the time t. Other choices are possible, such as a
smooth approximation of the `0 norm as in [10] or the neg-entropy approximations used
in FastICA (see [6]).

Applying FastICA in the transform domain leads to:

max
A,S̃

J(S̃) s.t. S̃S̃T = IN and X̃ = AS̃. (17)

One can notice that maximizing J(S) =
N∑
n=1

∑
t |sn(t)|

4

(
∑

t |sn(t)|2)
2 is equivalent to minimiz-

ing J̃(S) =
N∑
n=1

(
∑

t |sn(t)|
2)

2∑
t |sn(t)|4

which is exactly the
`p
`q

sparse penalty studied in [27] for

deconvolution.

2.2.3. ICA and the noise

If ICA was first developed for noiseless mixtures, some versions of ICA robust to noise
have been further proposed such as [28, 29]. However, these approaches seem to be less
robust to noise than the SCA based methods (see the discussion in [17]).

In this article, we stick to the simple model of the white Gaussian noise. The problem
of spatially correlated noise has been widely studied and can be tackled by a whitening
step (see for example [30]). However, taking the spatially and temporally correlated noise
into account is more complex [31]. We let the study of non white noise in inverse problems
to further works, as it is out of the scope of this article dedicated to the instantaneous
BSS.
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3. Revisiting Sparse ICA

Using the MAP interpretation of the optimization problem (7), the regularization
term h can reflect the statistical independence of the synthesis coefficients between the
sources. Indeed, using the MAP approach in the Bayesian setting (6), the independence
assumption reflected in the prior on α leads to a separable penalty:

h(α) =

N∑
n=1

hn(αn) .

Then, in order to deal with the noise, we propose the following generalization of
Sparse ICA (SICA): 

min
A,α

1

2
‖X−AαΦ∗‖2F +

∑
n

hn(αn) + g(A)

s.t. S = αΦ∗ and SST = D,

(18)

where D ∈ RN×N is any diagonal matrix. The normalization constraint on the mixing
matrix A is sufficient to solve the scaling ambiguity. In the formulation (18), we do not
assume that the mixtures are whitened anymore. The decorrelation constraint on the
sources then leads to the proposed constrained SST = D, instead of SST = IN . As (7),
the functional (18) is not convex. Moreover, (18) becomes non convex in α for a fixed A
because of the decorrelation constraint.

The next theorem shows that through the synthesis point of view, the proposed
SICA (18) encompasses the FastICA/projection pursuit and Infomax/maximum likeli-
hood techniques able to deal with noisy and underdetermined mixtures, by working on
the synthesis coefficients α, such that S = αΦ∗.

Theorem 1. Let the BSS problem (9), with M = N . Let Φ be an orthogonal basis.
We denote by X̃ = XΦ and S̃ = SΦ the analysis coefficients of the mixtures X and the
sources S, respectively. Suppose that the mixtures are whitened (XXT = X̃X̃T = IM ).
Let

• WInfomax be the solution of the Infomax problem (11) on the analysis coefficients
X̃, and SInfomax = WInfomaxX̃Φ∗,

• WFastICA be the solution of FastICA problem (15) on the analysis coefficients X̃,
and SFastICA = WFastICAX̃Φ∗,

• αSICA,λ and ASICA,λ be the solution of the sparse ICA problem (18) with the
particular choice D = IM , and SSICA,λ = αSICA,λΦ∗.

Then, there exist g and h such that

SSICA,λ→0 = SInfomax,

or
SSICA,λ→0 = SFastICA.
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Proof. First, the orthogonality constraint on W: WWT = IM as well as the hypothesis
XXT = X̃X̃T = IM in ICA implies that SST = WXXTWT = IM . The second
ingredient of the proof is that Φ being an orthogonal basis, we have αn = s̃n = wT

n X̃.

Let g(A) = K log(|det A|) = −K log(|det W|) and h =
∑N
n=1− log pn, with pn

defined by Eq. (11). Then, when λ→ 0, SICA (18) becomes:

min
A,α

K log(|det A|)−
N∑
n=1

log pn(αn)

s.t. X = AαΦ∗ and SST = IM .

SICA can then be rewritten as the optimization problem on W:

max
W

K log(|det W|) +

N∑
n=1

log pn(wT
n X̃)

s.t. WWT = IM ,

which proves the first point of the theorem.

Let g(A) = ıC(A) and h(α) = −J(α) with J defined by Eq. (17). Then, when λ→ 0,
SICA (18) becomes:

min
α
− J(α)

s.t. X = AαΦ∗ and SST = IM .

SICA can then be rewritten as the optimization problem on W:

max
W

J(WX̃)

s.t. WWT = IM ,

which concludes the proof.

When Φ is overcomplete, we can only conclude that, for λ→ 0

Γ(αSCA,ASCA) ≤ Γ(S̃FastICA,WFastICA−1

),

and
Γ(αSCA,ASCA) ≤ Γ(S̃InfoMax,WInfoMax−1

).

The connections between ICA and SCA appear several times. In [24], the authors have
remarked that the contrast function employed in ICA can be interpreted as a measure of
sparsity. In [37], it is shown that ICA methods work better in a transform domain such
as Curvelets or Ridgelets, and the authors justify the use of kurtosis in ICA by a sparse
coding point of view. This remark was already made in [24] at the end of 90’s. In [12,
13], the estimation of the mixing matrix for underdetermined mixtures is performed by
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exploiting the sparsity of the sources in the transform domain, and the independence
can be viewed as a consequence of sparsity. In [17], the authors already discussed some
existing links between ICA and SCA. In particular, they show that the `1 regularizer is
indeed a contrast function for ICA. We have here generalized and summarized all these
results to clearly show that FastICA and Infomax are actually sparse component analysis
methods with a decorrelation constraint to solve the blind source separation problem,
when M = N .

In the rest of this paper, for the sake of simplicity, we stick to `1 norm for the synthesis
coefficients. Therefore we consider the following formulation: min

A,α

1

2
‖X−AαΦ∗‖2F + λ‖α‖1 + ıC(A)

s.t. αΦ∗Φα∗ = D.

(19)

where D ∈ RN×N is any diagonal matrix.

4. Algorithms for SICA

In this section, we first present a simple convergent algorithm for SCA, by applying the
proximal alternating linearized method (PALM) [22]. Then, we propose two algorithms to
solve the problem (18). We use an alternating direction method of multipliers (ADMM)
approach before providing a simplified version, which appears to be faster and more
robust in practice.

4.1. A convergent algorithm for SCA: BSS-PALM

Applied to (7) with h(α) = ‖α‖1, the PALM leads to a simple algorithm using a
gradient descent step on the data term followed by a thresholding step to estimate the
sources coefficients α, A being fixed, and a gradient descent step on a data term followed
by a projection on the unit circle to estimate the mixing matrix A, α being fixed. The
algorithm is described in Alg. 1, where we use

• The soft-thresholding operator:

Sλ(x) = x

(
1− λ

|x|

)+

, (20)

where the multiplication and division are applied element-wise, as well as the op-
erator (x)+ = max(0, x).

• The normalization of each column of the matrix A

Ã = PC(A), (21)

such that each column ãn of Ã is normalized: ãn = an

‖an‖ , ∀n ∈ {1, . . . , N}.

The derivation of this algorithm is detailed in Appendix A.1.
Using a direct application of PALM [22, Theorem 3.1] to solve (7), one obtains directly

the next proposition.
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Algorithm 1: BSS-PALM

Initialization : α(1) ∈ RN×K , A(1) ∈ RM×N , L1,(1) = ‖A(1)‖22, L2,(1) = ‖α(1)Φ∗‖22,
j = 1;
repeat

1. ∇αQ
(
α(j),A(j)

)
= −A(j)T

(
X−A(j)α(j)Φ∗

)
Φ;

2. α(j+1) = Sλ/L1,(j)

(
α(j) − 1

L1,(j)∇αQ(α(j),A(j))
)
;

3. ∇AQ(α(j+1),A(j)) = −(X−A(j)α(j+1)Φ∗)Φα(j+1)H ;

4. A(j+1) = PC
(
A(j) − 1

L2,(j)∇AQ(α(j+1),A(j))
)
;

5. L1,(j+1) = ‖A(j+1)‖22;

6. L2,(j+1) = ‖α(j+1)Φ∗‖22;

7. j = j + 1;

until convergence;

Proposition 1. The sequence (A(j),α(j)) generated by Alg. 1 converges to a critical
point of problem:

min
A,α

1

2
‖X−AαΦ∗‖2F + λ‖α‖1 + ıC(A).

4.2. ADMM approach

We first reformulate problem (19) with a linear constraint by introducing an extra
variable as follows:

argmin
A,α,S

1

2
||X−AαΦ∗||2F + λ||α||1 + ıC(A) + ıdeco(S)

s.t. S = αΦ∗,

(22)

where ıdeco is an indicator function of the decorrelation constraint of S, reading:

ıdeco(S) =

{
0 if SST = D, with D being diagonal
+∞ otherwise.

(23)

We then apply the linearized preconditioned alternating direction method of multipliers
(LPADMM) [38] to solve the problem (22).

The general idea of ADMM is based on the alternating optimization of the corre-
sponding augmented Lagrangian function:

L(A,α,S,η) =
1

2
||X−AαΦ∗||2F + λ||α||1 + ıC(A) + ıdeco(S) + 〈η,S−αΦ∗〉+

γ

2
‖S−αΦ∗‖2F

= F (A,α,S,η) + ıC(A) + ıdeco(S),

with

F (A,α,S,η) =
1

2
||X−AαΦ∗||2F + 〈η,S−αΦ∗〉+

γ

2
‖S−αΦ∗‖2F .
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The linearized and preconditioned version (LPADMM) is intended to simplify the algo-
rithm, that is, in each iteration, instead of minimizing the original function, to minimize
its first order approximation. ADMM approach has been widely used for inverse problem
using sparsity (see for example [39]). While used in practice for some non-convex prob-
lems (for example [40]), the convergence of ADMM algorithms in a non-convex setting is
currently under study [41, 42]. The derivation of this algorithm is postponed in Appendix
A.2. We refer to it as BSS-LPADMM in the following and summarise it in Alg. 2.

Algorithm 2: BSS-LPADMM

Initialization : α(1) ∈ RN×K , S(1) ∈ RN×T , A(1) ∈ RM×N , LF,(1) = ‖A(1)‖22 + γ,
L(1) = ‖α(1)Φ∗‖22, j = 1;
repeat

1. ∇αF (A(j),α(j),S(j),η(j)) =

−A(j)T (X−A(j)α(j)Φ∗)Φ− η(j)Φ− γ(S(j) −α(j)Φ∗)Φ;

2. α(j+1) = Sλ/LF,(j)(α(j) − 1
LF,(j)∇αF (A(j),α(j),S(j),η(j)));

3. S(j+1/2) = α(j+1)Φ∗ − η(j)/γ;

4. ΣS(j+1/2) = S(j+1/2)S(j+1/2)T ;

5. WS(j+1/2) = (diag(ΣS(j+1/2)))1/2Σ
−1/2
S(j+1/2) ;

6. S(j+1) = WS(j+1/2)S(j+1/2);

7. ∇AQ(A(j),α(j+1)) = −(X−A(j)α(j+1)Φ∗)Φα(j+1)∗ ;

8. A(j+1) = PC
(
A(j) − 1

L(j)∇AQ(A(j),α(j+1))
)
;

9. η(j+1) = η(j) + γ(S(j+1) −α(j+1)Φ∗);

10. LF,(j+1) = ‖A(j+1)‖2F + γ;

11. L(j+1) = ‖α(j+1)Φ∗‖2F ;

12. j = j + 1;

until convergence;

4.3. A simplified version

The BSS-LPADMM algorithm solves directly the problem (19) but is subject to big
computational burden. Therefore, we design here a simplified version in Alg. 3 and refer
to this algorithm as BSS-Deco.

Compared to BSS-LPADMM, we set the dual variable η and the penalty parameter γ
to zero. Despite the lack of convergence proof, experiments support its good performance.

4.4. Determining the number of sources

The authors of [43] show that if one has only an upper bound of the number of sources,
acceptable estimation of the source signals can still be obtained by the analysis sparsity
minimization with `1 norm. They showed that the extra source channels will contain little
energy thus do not have obvious negative effect on the source estimation. We employed
the simple strategy presented in Alg. 4 to eliminate extra source channels during the
iterations, where IM and Im are the source index which correspond to the source of
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Algorithm 3: BSS-Deco

Initialisation : α(1) ∈ RN×K , A(1) ∈ RM×N , L(1) = ‖A(1)‖22, j = 1;
repeat

1. ∇αQ(A(j),α(j)) = −(X−A(j)α(j)Φ∗)Φα(j)∗ ;

2. α(j+1) = Sλ/L(j)(α(j) − 1
L(j)∇αQ(α(j),A(j)));

3. S(j+1/2) = α(j+1)Φ∗;

4. ΣS(j+1/2) = S(j+1/2)S(j+1/2)T ;

5. WS(j+1/2) = (diag(ΣS(j+1/2)))1/2Σ
−1/2
S(j+1/2) ;

6. S(j+1) = WS(j+1/2)S(j+1/2);

7. A(j+1) = PC(XS(j+1)T );

8. L(j+1) = ‖A(j+1)‖22;

9. j = j + 1;

until convergence;

maximum and minimum energy respectively. EIM and EIm are the corresponding energy,
and ε a threshold.

Algorithm 4: BSS-Deco with the number of sources determination

repeat

1. Update α, S and A according to one iteration of Algo. 3;

2. if EIM /EIm > ε then
Eliminate sIm , αIm and aIm

3. j = j + 1;

until convergence;

5. Experiments

After presenting the experimental setup, we discuss the choice of the hyperparameter
λ and the robustness to the choice of the number of unknown sources. We then com-
pare all the proposed algorithms and the state-of-the-art ICA and SCA algorithms on
over/underdetermined mixtures with and without additive white Gaussian noise.

Results and matlab code are available on http://fcfeng28.wixsite.com/monsite/

professional-use.

5.1. Experimental setup

The algorithms are evaluated on mixtures created with 10 sets of signals used in [44],
issued from the SiSEC2011 database [45], with a sample rate at 11 kHz and a duration
of 6 s. All the sources have the same order of energy. The mixing matrix was generated
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randomly following a normal distribution with normalized columns. The STFT was
computed with half-overlapping tight Hann window of 512 samples length (about 46.5 ms)
using the LTFAT toolbox [46]. All the proposed algorithms are initialized randomly
following a normal distribution. Despite the non convexity of the approaches, we have
observed that the results are robust to this initialization.

The separation performances were assessed using the Signal to Distortion Ratio (SDR)
and Signal to Interference Ratio (SIR) [47]. The SDR indicates the overall quality of each
estimated source compared to the target, while the SIR reveals the amount of residual
crosstalk from the other sources. A larger value of SDR/SIR means a better quality of
separation.

To show the improvement brought by the perfect knowledge of the mixing matrix,
we design two ”non blind” oracle settings for the proposed algorithms for comparison.
These two oracles are denoted by BSS-Oracle (corresponding to the non blind version of
BSS-PALM and BSS-Deco) and BSS-LPADMM-Oracle (corresponding to the non blind
version of BSS-LPADMM-Oracle).

Finally, the parameter γ for BSS-LPADMM was set empirically to γ = 0.05.

5.2. Choice of the hyperparameter λ

Several methods have been studied for automatic choice of λ in inverse problem, such
as projected GSURE (generalized Stein unbiased risk estimator, see [48] and references
therein) or the Stein Unbiased GrAdient estimator of the Risk (SUGAR) [49]. However,
most of the proposed methods imply to compute several solutions for several λ, and then
choose the ”best” solution according to some criteria. If such a blind method is needed
for some applications, it can also be required to let the user decide what is the ”best”
solution. Particularly for signal (audio, image, video...) restoration, the best acceptable
result will not always fit any ”objective” criteria. Such a discussion can be found for
example in [50] for audio signals.

We stick in this article to simple choices for the hyperparameter:

• If the mixture is assumed to be free of noise, we choose λ → 0 in order to avoid
any ”denoising” on the estimation. In practice, for small value of λ, we used the
continuation trick also known as warm-start or fixed-point continuation [51]: we
first run the algorithm with a large value of λ, and then iteratively decreased the
parameter till the wanted value.

• If some noise is added, then we choose the λ giving the best results in term of SDR
for each algorithm. This choice is rarely the best choice from a subjective point of
view, and cannot be automatically done in practice. However, it appears to be the
most fair, by giving the best achievable result from a SDR point of view (the SDR
giving the overall quality of each estimated source compared to the target).

In addition to this two ”default” choices, we also provide a short discussion about
the influence of λ on the results.

5.3. Robustness to the number of sources

The following experiments show that the proposed algorithms are robust to the num-
ber of sources, using Alg. 4 with the threshold ε empirically fixed to 3.5 in our exper-
iments. For the sake of simplicity, we only show the results obtained in the noiseless
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setting for the proposed BSS-Deco in Alg. 3. Other algorithms lead to similar results.
In these experiments, the number of microphones was set to M = 3, the real number of
sources Nr and its upper bound N varied from 2 to 5. Fig. 1 displays the separation re-
sults and supports the robustness of the proposed algorithm to the choice of the number
of sources. One can observe that the curves are almost constant, which mean that an
over-estimation of the sources does not decrease the performances: the right number of
sources is selected by Alg. 4.
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Figure 1: Performances as a function of the upper bound of number of sources for different cases

5.4. Overdetermined BSS

In this setting, the number of sources is fixed to N = 3 and the number of microphones
runs from 3 to 10 (3, 5, 7 and 10).

5.4.1. Noiseless case

As reference for ICA approaches, we provide the results obtained by Efficient Fas-
tICA (EFICA) [52], an improved version of FastICA whose residual error variance at-
tains asymptotically the Cramér-Rao lower bound, and second order blind identification
(SOBI) [53] using the toolbox [54].

In the noiseless case, the whitening and dimension reduction used in ICA is justi-
fied. We therefore present the results obtained by all the algorithms –except for ICA
approaches– with and without this pre-processing step. The results are summarized in
Table 1.

It is clear that the whitening pre-processing step greatly improves the results of
BSS-PALM and GMCA, which outperform other approaches, while their performances
are the worst without this pre-processing step. Moreover, it is also interesting to note
that the performances of all the sparsity-based algorithms improve with the number of
observations when such a pre-processing step is not used.

This experiment shows that the proposed algorithms are able to well separate overde-
termined mixtures as expected. In this case, the ICA approaches are indeed the most
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Table 1: Performances of different algorithms in noiseless (over)determined setting for N = 3 (SDR /
SIR). On a line, the best performance is in black bold. If the difference between a performance and the
best is less than 1 dB, it is displayed in gray bold.

BSS-PALM BSS-ADMM BSS-Deco GMCA EFICA SOBI
M = 3 17.0 / 17.0 41.6 / 41.6 45.8 / 45.8 17.8 / 17.8 - -
M = 5 19.4 / 19.4 44.3 / 44.3 46.0 / 46.0 18.0 / 18.0 - -
M = 6 25.6 / 25.6 45.7 / 45.7 46.1 / 46.1 22.8 / 22.8 - -
M = 7 29.9 / 29.9 45.6 / 45.6 46.9 / 46.9 27.5 / 27.5 - -
M = 10 39.3 / 39.2 48.2 / 48.2 47.6 / 47.9 38.3 / 38.3 - -

With whitening 66.0 / 66.0 48.4 / 48.4 48.3 / 48.3 66.6 / 68.4 49.5 / 49.5 37.3 / 37.3

appropriate choice to separate such mixtures thanks to the simplicity and rapidity of the
practical algorithms (cf. Sec. 5.6 about the computational time).

5.4.2. Noisy case

Performance as a function of input Signal to Noise Ratio (SNR). In this experiment,
we stick to the determined setting, i.e. M = 3, N = 3. The results are summarized on
Fig. 2.
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Figure 2: Performances as a function of the input SNR in determined setting (M = 3, N = 3)

Once again, BSS-LPADMM and BSS-Deco have similar performance in terms of
SDR and outperform BSS-PALM especially when the input SNR is relatively high. In
terms of SIR, as expected, BSS-LPADMM and BSS-Deco lead to the best performances,
comparable with BSS-LPADMM-Oracle.

One of the most remarkable results, is that the two oracle settings perform simi-
larly as their corresponding ”blind” algorithms in terms of SDR, while BSS-PALM and
BSS-Oracle obtain the two worst SIR. This last point supports the intuition that the
decorrelation constraint is particularly important to improve the SIR. These results sup-
port the conclusion of [55], where SCA approaches appears to be the most robust to
noise.
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Performance as a function of the number of observations. In this experiment, a white
Gaussian noise is added to reach an input SNR of 7.58 dB. The results are summarized
on Fig. 3.
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Figure 3: Performances as a function of the number of microphones in (over)determined noisy scenario
with N = 3 and input SNR equaling 7.58 dB

Similar remarks as previous paragraph can be made: BSS-LPADMM and BSS-Deco
reach the best performances, comparable to BSS-LPADMM Oracle, for both SDR and
SIR, while BSS-Oracle shows bad performances in term of SIR. As expected, SDR and
SIR grows with the number of observations for all algorithms.

Performance as a function of sparsity level. As mentioned before, the hyperparameter
λ in the proposed algorithms is linked to the variance of the input noise and controls the
sparsity level of the estimated sources. Therefore, we present the performances of the
proposed algorithms as a function of the sparsity level2 of the estimated source signals
on Fig. 4.

In this case, the behavior of the SDR and SIR are comparable. We can notice that,
for BSS-LPADMM and BSS-Deco, the best performance is obtained when the sparsity
level is around 85%. Empirically, this sparsity level corresponds to λ ' σ where σ is the
standard deviation of the input noise.

5.5. Underdetermined BSS

In these experiments, the number of microphones varies from 2 to 5 and the number
of sources runs from 3 to 6. We compare the proposed algorithms to the state-of-the art
approaches where the mixing matrix is first estimated using Demix [14], then the sources
are estimated by the time-frequency masking (DUET) [15] or the `1 minimization of the

2Sparsity level here means the percentage of zero values in the vector or matrix.
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Figure 4: Performances as a function of the sparsity level of the estimated sources for SNR=7.58 dB in
determined scenario (M = 3, N = 3)

analysis coefficients [16]. We denote these two methods by Demix-DUET and Demix-`1
respectively. We must stress that, in practice, Demix cannot work when the number of
sources is larger than 5 with the number of observations M = 2.

5.5.1. Noiseless case

Performance as a function of the number of observations. We first fix the number of
sources to N = 6. Table 2 shows the evolution of SDR and SIR with respect to the
number of observations. As DUET method is mainly for two-microphone setting, its
performance is not shown.

Table 2: Performances of different algorithms in noiseless underdetermined setting with the number of
sources N = 6 (SDR / SIR). On a line, the best performance is in black bold. If the difference between
a performance and the best is less than 1 dB, it is displayed in gray bold.

BSS-PALM BSS-ADMM BSS-Deco BSS-Oracle BSS-LPADMM-Oracle Demix-`1
M = 2 01.4 / 05.9 01.9 / 06.2 01.3 / 07.8 03.0 / 07.9 02.5 / 09.2 -
M = 3 07.5 / 11.5 06.4 / 12.6 07.5 / 14.3 07.9 / 12.5 06.7 / 13.0 08.0 / 12.1
M = 4 12.9 / 17.0 11.8 / 18.1 12.9 / 19.7 13.3 / 18.0 12.1 / 18.6 13.2 / 17.1
M = 5 15.3 / 17.1 17.7 / 24.1 20.1 / 26.3 20.2 / 24.7 18.7 / 24.6 20.1 / 24.1

Except for M = 2, the Demix-`1 reaches the best SDR among all the non-oracle
algorithms, but the difference between BSS-Deco is less than 1 dB, while BSS-Deco
outperforms other approaches in terms of SIR. One can remark that BSS-LPADMM-
Oracle is also outperformed by BSS-Deco, which can be explained by the fact that BSS-
LPADMM can be sensitive to local minima.

Performance as a function of the number of sources. In these experiments, the number
of observations is fixed to M = 2. We provide on Fig. 5 the evolution of SDR and SIR
with respect to the number of sources.
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Figure 5: Performances as a function of the number of sources in underdetermined noiseless scenario
(M = 2)

As expected, the performances collapse when N grows. For N ≤ 4, all approaches
except BSS-PALM and Demix-DUET provide comparable results in term of SDR. BSS-
Deco reaches the best SIR (greater than BSS-Oracle and close to BSS-LPADMM-Oracle).
For N > 5, performances of BSS-Deco collapse in terms of SDR, but still outperforms
other non-oracle algorithms in terms of SIR.

5.5.2. Noisy case

Performance as a function of the input SNR. Fig. 6 displays the separation results of the
proposed algorithms as a function of the input SNR, with the number of sources fixed to
N = 3 and the number of observations to M = 2.

Once again, the two oracle algorithms outperform the others in terms of SDR, while
only BSS-LPADMM-Oracle outperforms other approaches in terms of SIR, still support-
ing the fact that taking decorrelation into account improves the SIR of the estimated
source signals.

From a SDR point view, all algorithms are comparable, except Demix-DUET. BSS-
PALM and Demix-`1 perform a little worse, but the difference is less than 1 dB. The
major difference between the algorithms is from a SIR point of view: BSS-LPADMM and
BSS-Deco clearly outperform other approaches, including BSS-Oracle. Demix algorithm
does not work when the input SNR is less than 9 dB.

Performance as a function of the sparsity level. As in the (over)determined case, we
present in Fig. 7 the separation performances as a function of the sparsity level of the
estimated source signals for SNR=23.43 dB and 9 dB.

We can see on Fig. 7 that a compromise must be performed between the SDR and
the SIR in the underdetermined case: a small improvement on the SDR can lead to a
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Figure 6: Performances as a function of the input SNR in underdetermined scenario (M = 2, N = 3)
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Figure 7: Performances as a function of the sparsity level in underdetermined noisy case (M = 2, N = 3)
with SNR=23.4 dB (left) and SNR=9 dB (right)

big decrease of the SIR. This behavior differs from the similar experiments performed in
the determined case in Fig 4.

5.6. Computational comparison

We end the experiment section by giving some indications about the computational
time of different algorithms. Table 3 shows the computational time for the previously
mentioned sparsity-based algorithms with 20000 iterations, which is the number of itera-
tions used in practice for the experiments. The computational time of EFICA and SOBI
using ICALAB toolbox and Demix-DUET method is about 1 second. In Fig. 8, we show
the evolution of the SDR with respect to the CPU time, in the underdetermined noiseless
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scenario of Sec. 5.5.1. The computational time of GMCA with M = 3 and N = 3 is
1600 s for 20000 iterations.

Table 3: Computational time for different algorithms for one mixture with M = 2 and N = 3

BSS-PALM BSS-LPADMM BSS-Deco Demix-`1
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Figure 8: Evolution of the SDR with respect to the CPU time

6. Discussion and conclusion

In this paper, we studied the link between some ICA methods (FastICA and Info-
max) and SCA for BSS with instantaneous mixtures. By combining the decorrelation
constraint in time domain and the synthesis sparsity optimization, we proposed a new
framework of SICA to generalize ICA into noisy and underdetermined scenario. We have
shown that FastICA and Infomax can be formulated as a particular case of the proposed
SICA functionnal (18). We designed several iterative algorithms to solve the problem.

Numerical experiments clearly support that taking the decorrelation constraint into
account greatly improves the separation results in terms of SIR, without degrading the
SDR. This claim is particularly supported by the fact that the proposed algorithms BSS-
LPADMM and BSS-Deco outperform the oracle source separation algorithm without
any decorrelation constraint. Moreover, except when the number of unknown sources
is large, the proposed BSS-LPADMM and BSS-Deco reach comparable results of their
oracle source separation with decorrelation constraint BSS-LPADMM-Oracle.

Regarding the computational time of the various approaches used in the experiments,
it appears that the ICA approaches remain the most competitive for noiseless and overde-
termined mixtures. However, for noisy overdetermined mixtures, BSS-Deco appears to
be much more robust than GMCA with respect to the input SNR and the number of
unknown sources, GMCA being already known to be more robust to noise than ICA
methods [17]. Finally, for underdetermined mixtures (with or without noise) BSS-Deco
appears to be very competitive: while its computational cost is twice that of Demix-`1,
the SIR improvement is around 1 dB for an input SNR of 10 dB, and 2 dB for an input
SNR of 20 dB, while the SDR is slightly higher (less than 1 dB).

Future work will focus on extending the SICA framework to convolutive mixtures.
The straightforward extension of this work could also be considered: studying other
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sparse regularization than the simple `1 norm, such as social sparsity [56],
`p
`q

crite-

rion [57], but also considering the sparsity constraint directly on the analysis coefficient
of the sources as in [58].

Appendix A.

Appendix A.1. Derivation of the PALM algorithm Alg. 1

PALM method is designed to deal with non-convex problems reading:

min
x,y

H(x) +Q(x,y) +G(y), (A.1)

where H(x) and G(y) are proper lower semi-continuous functions, Q(x,y) is a smooth
function with Lipschitz gradient on any bounded set. The proximal method proposed
in [22] updates the estimate of (x,y) via

x(j+1) ∈ argmin
x

H(x) + 〈x− x(j),∇xQ(x(j),y(j))〉+
t1,(j)

2
‖x− x(j)‖22, (A.2)

y(j+1) ∈ argmin
y

G(y) + 〈y − y(j),∇yQ(x(j+1),y(j))〉+
t2,(j)

2
‖y − y(j)‖22, (A.3)

where t1,(j) and t2,(j) are two appropriate chosen step sizes. Thanks to the proximal
operator

proxψ(y) = argmin
x

1

2
‖y − x‖2 + ψ(x), (A.4)

the minimization steps (A.2) and (A.3) can be written as follows:

x(j+1) ∈ proxH/t1,(j)

(
x(j) − 1

t1,(j)
∇xQ(x(j),y(j))

)
, (A.5)

y(j+1) ∈ proxG/t2,(j)

(
y(j) − 1

t2,(j)
∇yQ(x(j+1),y(j))

)
. (A.6)

It is shown in [22] that the sequence generated by (A.5) (A.6) converges to a critical
point of (A.1). For problem (7), we have:

H(α) = λ‖α‖1 , G(A) = ıC(A),

Q(α,A) =
1

2
‖X−AαΦ∗‖2F ,

(A.7)

and the particular choices:

t1,(j) = L1,(j), t2,(j) = L2,(j), (A.8)

where L1,(j) and L2,(j) are the Lipschitz constants of∇αQ(α(j),A(j)) and∇AQ(α(j+1),A(j))
respectively.

Knowing that the Proximal operator of `1 is the soft thresholding operator (20), and
the proximal operator of ıC(A) is given by the normalization (21), one recovers Alg. 1.
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Appendix A.2. Derivation of BSS-LPADMM Alg. 2

The augmented Lagrangian reads:

L(A,α,S,η) =
1

2
||X−AαΦ∗||2F + λ||α||1 + ıC(A)

+ ıdeco(S) + 〈η,S−αΦ∗〉+
γ

2
‖S−αΦ∗‖2F ,

(A.9)

where η is the dual variable and γ is the penalty parameter. Let

F (A,α,S,η) =
1

2
||X−AαΦ∗||2F + 〈η,S−αΦ∗〉+

γ

2
‖S−αΦ∗‖2F . (A.10)

LPADMM minimizes the augmented Lagrangian by iteratively updating the primal and
dual variables via the following update rules:

α(j+1) = argmin
α
〈∇αF (A(j),α(j),S(j),η(j)),α〉+ λ‖α‖1 +

LF,(j)

2
‖α(j) −α‖2F , (A.11)

S(j+1) = argmin
S
〈η(j),S−α(j+1)Φ∗〉+

γ

2
‖S−α(j+1)Φ∗‖2F + ıdeco(S), (A.12)

A(j+1) = argmin
A

1

2
‖X−Aα(j+1)Φ∗‖2F + ıC(A), (A.13)

η(j+1) = η(j) + γ(S(j+1) −α(j+1)Φ∗). (A.14)

In the sub-problem (A.11), LF,(j) is the Lipschitz constant of ∇αF (A(j),α(j),S(j),η(j)),
with

∇αF (A(j),α(j),S(j),η(j)) = −A(j)T (X−A(j)α(j)Φ∗)Φ− η(j)Φ− γ(S(j) −α(j)Φ∗)Φ.
(A.15)

Using the soft-thresholding operator (20), (A.11) can be rewritten as:

α(j+1) = Sλ/LF,(j)

(
α(j) − ∇αF (A(j),α(j),S(j),η(j))

LF,(j)

)
. (A.16)

The sub-problem (A.12) can be formulated as a decorrelation projection:S(j+1) = argmin
S

γ

2

∥∥∥∥S−α(j+1)Φ∗ +
η(j)

γ

∥∥∥∥2
F

s.t. SST = D, with D diagonal.

(A.17)

and can be solved thanks to the following proposition [59]:

Proposition 2. Let s(t) ∈ RN be a 0-mean random vector with a variance-covariance
matrix Σs. Let W be the optimal decorrelation transform that minimizes the Mean-
Squared Error (MSE) between the input s(t) and the output y(t) = Ws(t), such that its

23



covariance matrix ΣY is diagonal:

min
W

E
{

(s(t)− y(t))2
}

s.t. y(t) = Ws(t), Σy = σ2
yI,

then W = σ2
yΣ
−1/2
s .

For the matrix of sources S, when T is large, the empirical covariance matrix SST con-

verges to the covariance matrix Σs. We can then choose in practice W = (diag(ΣS))1/2Σ
−1/2
S .

Finally, the sub-problem (A.13) is tackled by a classical projected gradient descend.
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