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Feedback Autonomic Provisioning for
Guaranteeing Performance in MapReduce
Systems

M. Berekmeri, D. Serrano, S. Bouchenak, N. Marchand, B. Robu

Abstract—Companies have a fast growing amounts of data to process and store, a data explosion is happening next to us. Currently
one of the most common approaches to treat these vast data quantities are based on the MapReduce parallel programming paradigm.
While its use is widespread in the industry, ensuring performance constraints, while at the same time minimizing costs, still provides
considerable challenges. We propose a coarse grained control theoretical approach, based on techniques that have already proved
their usefulness in the control community. We introduce the first algorithm to create dynamic models for Big Data MapReduce systems,
running a concurrent workload. Furthermore, we identify two important control use cases: relaxed performance - minimal resource
and strict performance. For the first case we develop two feedback control mechanism. A classical feedback controller and an even-
based feedback, that minimises the number of cluster reconfigurations as well. Moreover, to address strict performance requirements a
feedforward predictive controller that efficiently suppresses the effects of large workload size variations is developed. All the controllers
are validated online in a benchmark running in a real 60 node MapReduce cluster, using a data intensive Business Intelligence
workload. Our experiments demonstrate the success of the control strategies employed in assuring service time constraints.

Index Terms—Control for computing systems, event based control, cloud computing, feedforward control, Big Data

1 INTRODUCTION
1.1 Background and challenges

We are at the dawn of a data and computing revolution.
The amount of raw data produced by everything from
our mobile phones, tablets, computers to our smart
watches is increasing exponentially. As a result compa-
nies face novel and growing challenges in data storage
and analysis. The sheer amount of data available is
asking for a shift of perspective from the traditional
database approaches to platforms capable of handling
petabytes of unstructured information available for tasks
such as personalized advertising, advanced data mining
or classification.

One of the most popular of such platforms is the
MapReduce framework, which is one of the currently
most utilised programming paradigm in use for parallel,
distributed computations over large amounts of data.
MapReduce is backed by the largest BigData industry
leaders. For example, Google has more than 100 thou-
sand MapReduce jobs executed daily [1] , Yahoo has
more than 40 thousand computers running MapReduce
jobs, Linkedin evaluates more than 120 billion relation-
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ships per day using MapReduce [2] while, Facebook’s
largest MapReduce cluster contains more than a 100
petabytes of data.

Nevertheless, while current commercial MapReduce
services such as Amazon EMR [3] and Microsoft HDIn-
sight [4] offer solutions for quick and cost-effective Big
Data processing they don’t provide any guarantees in
terms of application performance. Furthermore, while
some elasticity mechanism are given, they are not com-
pletely autonomous and several important scaling deci-
sions, such as selecting the different scaling thresholds,
are left up to the service user.

However, before such autonomous control solutions
can be synthesised, performance models need to be built
that can capture the dynamic behaviour of a MapReduce
system. These models can constitute the basis upon
which an automatic controller can decide when and
how to optimally intervene in the system in order to
keep the desired Quality of Service (QoS). This QoS
is formalised in the cloud in the form of a Service
Level Agreement (SLA), which is a contract negotiated
between the clients and their service provider. An SLA
can consist of multiple Service Level Objectives (SLOs),
for example the maximum service time to be guaranteed
by the provider.

SLAs are a relatively a fresh area of research
in cloud systems, for more details see [5], [6], [7].
Although current Big Data MapReduce solutions do
not provide guarantees in terms of performance and/or
dependability, we believe that more and more customers
will be interested on having such guarantees and that
those service providers that can provide them, will gain
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a competitive advantage,
MyCloud [8], HARNESS [9].

But why is the performance modelling and control of
a MapReduce service such a challenge? If one desires
to run a MapReduce job at least three things need to
be supplied to the framework: the input data to be
treated, a Map function and a Reduce function. However,
the Map and Reduce functions can only be treated as
black box models since they are entirely application-
specific, and we have no a priori knowledge of their
behaviour. Without some profiling, no assumptions can
be made regarding their runtime, resource usage or
the amount of output data produced. On top of this,
many other independent factors have been identified
that influence the performance of MapReduce jobs: CPU,
input/output and network skews [10], hardware and
software failures [11], Hadoop’s (Hadoop is the most
used open source implementation of MapReduce) node
homogeneity assumption not holding up [12], [13], and
bursty workloads [14] and [15].

Moreover, when it comes to the cloud, resource provi-
sioning for deadline management is further made dif-
ficult because of the shared hardware resource archi-
tecture, where interference and concurrency issues may
arise frequently. Furthermore, as cloud providers desire
to maximise the resource utilisation of their clusters,
they have mechanisms for the dynamic reallocation of
unused resources which further adds to the variability
of system performance. So even with the same workload
and resource amount, an application performance may
vary depending on how noisy neighbouring applications
are. In the meantime, for most businesses of course,
missing deadlines results in financial losses. In some
cases these costs can go up to 100.000% per minute, as is
the case of an on-line brokerage industry [16].

As a result lots of research is being done in the
HPC, Grid, Database communities on improving the
performance, dependability of complex computing sys-
tems such as MapReduce. Extensive research has been
conducted already to improve upon MapReduce [17],
[18], [19] by changing the behaviour and algorithms of
the MapReduce framework itself. A key point to make
here is that, although these solutions improve upon
how MapReduce works, no performance guarantees are
provided.

In addition, our work differentiates itself from these
in several other aspects. First of all, we present a novel
method that enables the simplified automatic modelling
of complex distributed systems. We chose MapReduce
systems as our test case because it is a highly dynamic
system in both data quantity, richness and in terms of
its processing needs and it is one of the most popular
current architectures for distributed data processing.

Furthermore, one can notice that, due to the un-
predictability of new deployment environments, such
as the cloud, traditional adaptation approaches become
increasingly difficult to use. Therefore, more and more

see European Projects

attention is given to approaches used in different fields
for controlling complex systems. The most prominent of
these are the feedback control solutions coming from the
field of control theory [20], [21], [22], [23], [24], which has
been providing control solutions for physical systems for
several decades now. The advantages of control theory
are that it can provide a solid mathematical basis for
synthesizing feedback control loops, for handling safely
complexity and for having theoretically guaranteed re-
sults.

Our work is in line with these latter approaches as
we develop on-line feedback, feedforward control tech-
niques that don’t require complex tuning and that, con-
trary to existing heuristic approaches, can give theoret-
ically guaranteed performance. Moreover, our approach
is non-intrusive, it does not modify the framework.
Which, together with the generality of the developed
techniques presented in this paper, allows for the ap-
plicability of our approach to a wide variety of cloud
systems.

1.2 Scientific contributions

Taking all this into consideration, in this paper, we
propose a new approach to the performance modelling
and control of Big Data MapReduce cloud services. Our
contributions in this paper are the following;:
o We provide the first algorithm for building dynamic
models for Big Data MapReduce systems
o We develop and implement multiple novel con-
trollers able to assure service time constraints for
a concurrent MapReduce workload in two different
industrial scenarios: in the first case the assurance
of relaxed performance constraints with minimal
resource usage is desired, while in the second one
strict performance constraints are given, allowing
for a large resource consumption for short periods
of time.

1.3 Paper roadmap

The remainder of the paper is organized as follows.
Section 2 gives a brief overview of Big Data MapReduce.
Section 3 presents our contribution in constructing an
algorithm for building dynamic models for Big Data
MapReduce systems and its experimental validations.
In Section 4 the proposed control architecture is intro-
duced. Section 5 contains the description of two separate
relaxed performance - minimal resource control laws
and their experimental validation. Section 6 contains the
description of the strict performance control law and its
experimental validation. The related work is described in
Section 7. Finally, Section 8 draws the conclusions and
presents our ideas for future work.

2 BACKGROUND
2.1 MapReduce Systems

The main objectives of Big Data Clouds are to cap-
ture, store, analyse and manipulate large and complex
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amounts of data. MapReduce is one of the currently most
used programming paradigms developed for parallel,
distributed computations over large amounts of data.
The initial implementation of MapReduce is based on a
master-slave architecture. The master contains a central
controller which is in charge of task scheduling, monitor-
ing and resource management. The slave nodes take care
of starting and monitoring local mapper and reducer
processes [25].

The most used open source implementation of the
MapReduce programming model is Hadoop. It is
composed of the Hadoop kernel, the Hadoop Dis-
tributed Filesystem (HDFS) and the MapReduce engine.
Hadoop’s HDFS and MapReduce components originally
derived from Google’s MapReduce and Google’s File
System initial papers [1]. HDFS provides reliable dis-
tributed storage for our data and the MapReduce en-
gine gives the framework with which we can efficiently
analyse this data, see [25].

When it comes to MapReduce performance modelling,
the state of the art methods use mostly job level profiling
[26], [27], [28]. Moreover it is important to note that
current models predict only the steady state performance of
MapReduce jobs and do not capture system dynamics.
They also assume that a single job is running at one
time in a cluster, neglecting any workload fluctuations
and interferences. Meanwhile, a recent survey among
BigData solution providers (Teradata) and consumers
(Ebay, Facebook) reveals the unanimous response “Real
Big Data clusters are never run in single-user mode
- they never run just one job at a time” [29]. Still,
in the case of cloud deployments, the resource usage
being on demand, resources are mostly provisioned per
MapReduce job execution at the moment. We believe that
this is changing partly because of financial reasons. On
one hand, most cloud providers provide incentives for
long term reservation of nodes with pricing up to 60%
less than on demand rates, which is very advantageous
for batch jobs. On the other hand, in our experiments
we have observed that just by running multiple jobs
on the same cluster, instead of separate ones, one can
save up to 66% of the deployment costs. Therefore, to
address these issues a performance model is proposed
that captures the dynamic behaviour of a concurrent
workload of multiple jobs.

2.2 Experimental MapReduce Endvironment

All the experiments in this paper were conducted on-line
in Grid5000, on a single cluster of 60 nodes. The 60 nodes
infrastructure was chosen for practical reasons, as we
don’t yet have access to a larger cluster size. However, all
algorithms presented in this work scale well, and can be
applied to any cluster size, with only the re-identification
of the equation parameters as described in Section 3.5.
Grid5000 is a French nation-wide cluster infrastructure
made up of 5000 CPUs, developed to aid parallel
computing research. It provides a scientific tool for

running large scale distributed experiments, see [30].
Each node from the cluster used for our experiments
has a quad-core Intel CPU of 2.53GHz, an internal RAM
memory of 15GB, 298GB disk space and the connection
between the nodes is assured with an Infiniband 20G
network.

For our experiments we use the open source MapRe-
duce implementation framework Apache Hadoop v1.1.2
[31] and the high level MRBS benchmarking suite. A data
intensive BI workload is selected as our workload. The
BI benchmark consists of a decision support system for
a wholesale supplier. Each client interaction emulates a
typical business oriented query run over a large amount
of data (10GB in our case). To generate the client interac-
tions Apache Hive is deployed on top of Hadoop, which
converts SQL like queries to a series of MapReduce jobs.
All the nodes is the cluster were on the same switch to
minimize network skews.

The MapReduce Benchmark Suite [11] (MRBS) is a
performance and dependability benchmark suite for
MapReduce systems. MRBS can emulate several types of
workloads and inject different fault types into a MapRe-
duce system. The workloads emulated by MRBS are
designed to cover five application domains: recommen-
dation systems, business intelligence (BI), bioinformatics,
text processing and data mining. These workloads were
selected to represent a range of loads, from the compute-
intensive (e.g. recommendation systems) to the data-
intensive (e.g. business intelligence - BI) workload. One
of strengths of MRBS is to emulate client interactions
(CIs), which may consist of one or more MapReduce
jobs. These jobs are the examples of what may be a
typical client interaction within a real deployment of a
MapReduce system.

A simplified version of our experimental setup is
sketched in Figure 1. We measure from the cluster the
service time ! and the number of clients and we use the
number of nodes in the cluster to ensure the service time
deadlines, regardless the changes in the number of the
clients.

#Nodes

By

A #Clients
Service time (s)

Fig. 1. Intuitive view of the experimental setup

The control strategy is implemented in Matlab and
all the measurements are made online, in real time.
Although Matlab already provides an array of general

1. By service time we mean the time it takes for a client interaction
to run. In computer science this is also known as response time. We
did not use this term since in the control theory community “response
time” means something completely different.
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controllers, all the control algorithms presented here
were implemented from scratch, and were specifically
designed for our set-up. We use Matlab as it is the
standard tool in control theory, but all of the algorithms
could have been easily implemented in any other pro-
gramming language, like C++, Java for example. Where
we exploited Matlab’s powerful tools were the initial
simulations and during the model identification phase.
All our actuators and sensors are implemented in Linux
Bash scripts. For a more detailed version of our experi-
mental setup one can check Figure 2.

Remote

Local Sensor H
1 3 Sensor Bash ’

Bash Scripts Tunnels

Scripts

Response Time

Number of clients MRBS
workload
@ generator
2
_ o
Pl + Feed-forward 5] o
controller in Matlab S 2 Client Interactions
-
Hadoop
Number of nodes MapReduce

Local csih Remote I
Actuator AT Actuator
Bash Scripts Bash Scripts

Fig. 2. Detailed view of the experimental setup

The procedure of an experiment run is the following.
At the beginning of the experiment two communication
channels are created. These are used to send the control
commands, that can remove or add nodes to the Hadoop
cluster, and to monitor the runtime performance met-
rics (e.g. service time) through our custom monitoring
tools, which periodically process Hadoop’s logs. Since
the monitoring information for different jobs can be
found on the master node, slave level monitoring is not
required.

3 MAPREDUCE PERFORMANCE MODEL
3.1

The choice of control inputs out of Hadoop’s many pa-
rameters (more than 170) is not straightforward. As we
set out for our model to be implementation agnostic, we
take into consideration only those parameters that have
a high influence regardless of the MapReduce version
used. Two such factors that have been identified having
among the highest influence are the number of Mappers
and the number of Reducers available to the system, see
[32]. As these parameters are fixed per node level we
chose the number of nodes to be our control input since
it effects both.

Our control output is the service time, defined as the
average time (y) needed to process requests in a certain

Choosing the model inputs/outputs

time window. Low client service time is a desirable as it
reflects a reactive system.

yls] = avg(y1, ya, .-, Yn) (1)

The average y is calculated at every 30 seconds, using a
sliding window of T' = 15 minutes length.

3.2 Analysing system behaviour

Let us now present the behaviour of the system in
case of variations in the number of nodes (Fig. 3) and
respectively clients (Fig. 4). Each figure presents the
results after a warm-up phase of 20 minutes in which
the system reaches nominal operation.

The first experiment presents the results when the
number of nodes increases from 4 to 36. The number
of concurrent clients is fixed to 10 during the whole ex-
periment and 4 more nodes are added every 10 minutes,
see Fig. 3.(b). The multiple horizontal lines in Fig. 3.(a)
constitute the job runtimes. The jobs are grouped to-
gether vertically based on their runtime. It can be seen
that the overall behaviour of MapReduce is non-linear
since a proportional increase in the number of nodes is
not proportional to the reduction of response time (see
Figure 3 below).

In the second experiment we analyse the behaviour
of the MapReduce system for a fixed number of nodes
(20 in our case) and for an increasing number of clients.
The number of clients is increased by 5 every 10 min-
utes from 5 clients to 40, see Fig. 4.(b). We can see in
Figure 4.(a) that the behaviour is also non-linear. It is
also interesting to notice that, although the throughput
gets saturated in this case as well, it is not for the
same reasons as in the previous case, when we had
more resources then required by the current workload.
In contrast, here the throughput is saturated when we
have a lack of resources.

Although the overall system behaviour is non-linear,
in nominal operation (when the system is not highly
under- or overloaded), the system behaviour can be
approximated with a linear model, which is found by
linearising around a chosen operating point defined by
a baseline number of nodes and clients. Linearisation
is generally preferred when possible, because a linear
model is less complex to build and adapt on-line. Fur-
thermore, one can take advantage of the numerous con-
trol synthesis methods that have been already developed
for linear systems.

Our proposed methodology for choosing the lineari-
sation point is the following. After the client decides on
the number of nodes to have serving request (usually
based on financial constraints since the client rents the
nodes from the service provider) our algorithm gradu-
ally increases the number of clients, until the throughput
of the cluster is maximized? (it is important to max-
imise throughput for both environmental and financial

2. Throughput is measured as the number of client connection
demands per second and it has an inverse relation with service time
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Fig. 3. Effects of nodes variation, #Clients=10

reasons). This point of full utilization will be the set-
point for linearisation. More details on this issue are
given below in Section 3.6 where a general algorithm for
building dynamic performance BigData models is given.

For this specific case, we find this point from the previ-
ous experiments shown in Figure 3.(b) and Figure 4.(b).
As it can be seen, the point where the throughput starts
to saturate, is at 20 nodes and 10 clients, which will be
our set-point for linearisation.
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Fig. 4. Effects of workload variation, #Nodes=20

3.3 Capturing system dynamics

One of the important challenges in current MapReduce
deployments is assuring certain service time thresholds
for jobs. Therefore, our control objective is selected as
keeping the average service time below a given threshold
for jobs that finished in a the last time window. This time
window is introduced only to assign a measurable dy-
namics to the system. The definition of the time window
length is not straightforward. The bigger the window is,
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the more we loose system dynamics, while the smaller
it is, the bigger the noise will be in the measurements.
In our case the window size is tuned off-line. To
choose the windows size we start with a small value
and increase it gradually until we reach the desired
signal variance and the curves smoothen out. Let us now
remind that below this size the output measurements
may be influenced by the noise that arises from the
natural variance of the jobs. From a control perspective,
if the window is bigger than this size then the controller
reacts slower and if it is smaller it will react to noise.

3.4 Proposed model structure

The high complexity of a MapReduce system and the
continuous changes in its behaviour (because of software
upgrades and improvements) prompted us to avoid the
use of white-box modelling and to opt for a technique
which is agnostic to these issues. This leads us to a
grey-box or black-box modelling technique. The line
between these two techniques is not well defined, but we
consider our model a grey-box model since the structure
of the model was defined based on our observations of
linearity regions in system behaviour.

We propose a dynamic model that predicts MapReduce
cluster performance, in our case the average service time,
based on the number of nodes and the number of clients.
To the best of our knowledge this is the first dynamic
performance model for MapReduce systems.

#Clients
d(k)

Clients Model |

Ye

#z\'l(t):tdes Nodes Model ¥ Service Time
u

+ = y(k)
O

Yn

Ywr MapReduce model

Fig. 5. MapReduce control theoretical model: yarr

The structure of our model can be seen in Figure 5.
Our control input u(k) is the number of nodes in the
cluster while the changes in clients d(k) is considered
as a measurable disturbance. Our output y(k) is the
average service time of a job in the k' time interval.
The complete list of modelling notations used to define
the model structure is given in Table 1

As in the operating region our system is linear we
can apply the principle of superposition to calculate the
output:

y(k) =yc - d(k) + yn - u(k) (2)

where yy is the discrete time model between service time
and the number of nodes and y¢c is the discrete time
model between service time and the number of clients.

System output: average client request service time.
Control input: number of processing nodes in cluster
Disturbance input: number of clients

The time delay after which the effect of an input change
is visible on the output.

YN Nodes model - captures the effect of node variations on
service time.

a;,b; Parameters of the nodes model

yo Clients model - captures the effect of client variations
on service time.

REESY RS

Cp, lr Parameters of the clients model
nc,ny | Number of past output values affecting current output.
mc, my | Number of past input values affecting current output
YMR MapReduce model
TABLE 1
Definition of modelling notations.
3.5 Identifying model parameters

The identification procedure is fairly simple and can
be easily automated. Its methodology is summarized in
Figure 6.

Excitation

+ Parameters
Measurements of of the model
system behavior

—

Identification
algorithm

Fig. 6. General identification procedure

The identification algorithm is chosen from the wide
literature of identification algorithms (see [33] for a
review) used in control theory. In our case we chose
the prediction error estimation algorithm from [34]. This
method is a classical method in control theory and has
the advantage of putting an emphasis on the model
accuracy in predicting the next observation rather than
on its difference from a corresponding statistical model,
as it is the case for least square and maximum likeli-
hood identification methods. The method first provides
a continuous time model which is further on discretized
using Tustin bilinear transformation [20].

After the choice of the algorithm, the user should pro-
vide the excitation for the system (the MapReduce sys-
tem in our case) and the measurements of the system’s
response to this excitation. The most simple excitation
has the shape of a step, where the excitation signal has
a single step increase and then it remains constant for
the rest of the experiment.

After providing the excitation and the system’s re-
sponse as the input values of the identification algo-
rithm, the user gets the parameters of the mathematical
model of the system as the algorithm output.

As our system has large time constants (>300s as it
can be seen form Figures 3 or 4) we determine that a
sampling period of 30 seconds is sufficient. The reason-
ing behind this is based on Shannon’s law for choosing
the sampling period (for more information, see [20]).
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3.5.1 System identification without disturbance

For the system without disturbance the identification is
done by analysing the system behaviour from Figure 3.
Furthermore, a step in the number of nodes is used
to identify the model between the service time and
the number of nodes. The identified, disturbance free,
system model will have the following form:

nnN mN
YN (k) = Zai “YN(k—i) T ij " U(k—TNn—]) ®)
i=1 j=0

where the coefficients a; and b; along with the deadtime
Tn are to be found by the identification algorithm.
Furthermore, yy models the effect of nodes changes
on service time and w is the number of nodes. The
parameters a; capture the effect of past outputs on
current outputs, while b; capture the correlation between
current outputs and past cluster sizes.

3.5.2 Disturbance model identification

For the changes in the number of clients the system
behaviour is presented in Figure 4. The same strategy of
a step increase, in this case in the number of clients, will
be used to identify the model between the service time
and the number of clients. The model has the following
form :

nc mcg
Yoy =D YC(mp) + b dperory (@)
p=1 r=0

where the coefficients ¢, and d, along with the delay 7«
are to be found by the identification algorithm. Further-
more, yc models the effect of client changes on service
time and d is the number of nodes.

The given equations (3) and (4) can be applied to other
systems straight forward, with the re-identification of the
equation parameters. The models identified are valid for
a client mix where the variance in the mean response
time of the clients requests is 25%. In our case we have 5
different requests running. Moreover contrary to existing
solutions that build a model for each job, our model covers
an infinite set of jobs, the only condition being that their
response time variance is within the specified limit.

All the variables used in this section are deterministic
variables. Their values depend upon the dynamics of
system on which the identification algorithm has been
run. In our case the exact, numerical values of the
variables are given further on in Section 5, in equations
(5) and (6).

3.6 General algorithm for building dynamic perfor-
mance models of Big Data systems

A typical system design time question that might arise is
that, given a budged (that translates directly to number
of nodes), what is the maximum amount of clients
that our service can serve? Furthermore, to minimise
cost, one would like to maximise the resource usage
meanwhile, making sure that client request run as fast

as possible? Based on our experiences with modelling
MapReduce systems, we propose the following gen-
eral algorithm, that answers the previous question, and
which can be used to find the linearisation point around
which a dynamic model can be identified:

1) Choose the number of resources desired for nominal
operating conditions based on financial constraints.

2) Increase the number of clients until system through-
put starts to saturate.

3) Set this point of saturation defined by
(#resources, #clients) as your set point for
linearisation. Here the system is fully utilised.
Adding more clients would decrease performance,
adding more resources would not improve
performance.

4) Identify a dynamic performance model around this
operation point using the identification procedure
presented in Section 3.5.

The main advantage of this algorithm is that we will
have a model of our system at the edge of full utilisation,
which is where we normally want our steady state of the
system to be, to minimise costs. The model can predict
what happens when more clients arrive at full utilisation
and can help a controller decide upon the number of
resources to add to reach once again full utilisation and
keep the desired performance levels.

However, the model is valid around an operating
point. As a consequence, if we model our system using
10 clients and 20 nodes and then test our control with
100 clients and 200 nodes the model might loose validity,
depending on system linearity. However, this can be
easily addressed by re-triggering the automatic iden-
tification procedure, presented above in Section 3.5.1,
when we leave the operating region. Moreover, the com-
plexity of the parameter identification algorithm remains
unchanged, as the identification algorithm itself works
independently from actual value of the number of clients
or cluster size. As it focuses on the capturing the effect of
a change in the client or node count from current value.

4 CONTROL
4.1 Control motivation

Before presenting the control architecture let us see what
happens when we have no automatic control but only
a sudden step increase in the number of clients (see
Figure 7). Such a bursty increase in the number of clients
occurs frequently in practice, see [35] who analyses a
10-month log production of Yahoo’s supercomputing
cluster. We call this experiment an open loop experiment
since the feedback loop from the output to the input does
not exist in this case.

In our case we can see that, when 100% more clients
are added, the systems service time quickly exceeds
the reference threshold defined in the Service Level
Agreement (SLA). This behaviour is not desirable since
it automatically implies losses.
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Fig. 7. Baseline experiment - no control, #Nodes=20

4.2 Control architecture

When it comes to control the MapReduce system, we can
distinguish two separate cases. First, we have the relaxed
performance - minimal resources case where the service
provider needs to keep the system service time below the
reference threshold, defined in the SLA, but also wants to
minimize the number of used resources (in this case the
number of system nodes) to reduce cost. Therefore, if this
is specified in the SLA, the client accepts that for a small
amount of time the service time could exceed the reference
threshold. The second case is the strict performance one,
when the service provider has a very strict demand from
the client in keeping the service time below the reference
all the time. This can be the case for online brokerage
industry where the service unavailability costs about
6.48 million dollars per hour [16]. Since the number of
clients trying to use the service is unpredictable, the
service provider is accepting a considerable increase in
the number of the system nodes (therefore a increase in
the utilization cost) in order to respect the SLA and face
the client increase.

The complete schema of our control architecture, which
comes to address these two challenges, is presented in
Figure 8. The variables used in the figure are defined
in Table 2. As in Figure 5, we consider the MapReduce
system having two inputs: the control input u(k) which
is the number of nodes in the cluster and the exogenous
input d(k) which is number of clients to connect to the
system, and one output which is the service time y(k).

#clients
d(k)

Feed-forward controller

Reference

service time #nodes Service time

velk) 4 e(k) ufp(k) +4 (k) y(k)
R (o |10
Pl controller MapReduce System
y(k)

Fig. 8. MapReduce Control architecture

Yr Reference average service time set in the SLA.

Zpr Discrete time PI feedback controller.

Ugp Control output of the PI controller.

K,,K; | Feedback control tuning parameters.

e Difference between measured and desired service times.

€lim Event threshold on the error. If the threshold is exceeded
actuation is necessary.

Toct Time elapsed since the last actuation.

Zrp Discrete time feedforward controller.

Uffp Control output of the feedforward controller.

TABLE 2
Definition of control variables.

Our answer to the challenges of the first use case is

the PI feedback controller Zp;. When we have strict
SLA constraints we add the feedforward controller Zrp.
The size of the workload in this case is assimilated to
an exogenous disturbance input. However, as we can
accurately measure it on-line the feedforward controller
can use this information in order to assure a faster
controller response. This is done by counteracting the
disturbance before its effects can be measured on the
output. These type of control architectures have well
proven their efficiency in many different engineering
domains, from the early 1900’s.
As we can see from Figure 8 the PI feedback controller
Zp; periodically monitors the service time and reacts
to difference between the measured y,.(k) and reference
yr(k) values. While, the feedforward controller Zpp
monitors and reacts to client variations. In the next
sections we discuss these different control strategies in
detail.

5 MODEL VALIDATION

The identification procedure from Section 3.5 is used
to find the model of the MapReduce System (yyrr)
composed of two submodels yny and yc (see equation
(2)). As stated before in Section 3.5.1 the prediction error
algorithm is implemented to find the parameters of these
functions.

5.1 System identification without disturbance

The identified model for the node changes can be seen
in Figure 9.

A step in the number of nodes is used to identify
the model between the service time and the number
of nodes. As it can be seen, the model found by the
algorithm captures well the system dynamics with a fit
level of 86.53%.

Four our case, the form of equation (3) and the values
of the coefficients a; and b;, are given in equation (5).
As it can be seen, the identified delay 7 is 5 sampling
periods.

yN(k) = 0.919-yN(k._1) —0.179“&(;9,5) _0-179'u(k—6) (5)
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Fig. 9. Identification of the undisturbed system. It predicts
the effect of nodes changes on job runtime. #Clients=10

5.2 Disturbance model identification

Figure 10 shows the step responses for the identified
and measured systems, in the case of a change in the
number of clients. As we can see, the identified model
also follows closely the measurements taken from the
real system, presenting a 87.94% fit. With the coefficients
¢p and d,. found by the algorithm, equation (4) becomes
(6), which captures the effects of client variations on
service time:

Yo (k) = 0.7915'yc(k_1)+1.0716'd(k_8)+1.0716'd(1€_9) (6)

It can be seen that for this model, the delay is different
than the previous one, 7¢ being equal to 7 sampling
periods.

Step response
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Fig. 10. Identification of the disturbance model. It cap-

tures the effect of the changes in the number of clients on
job runtime. #Nodes=20

6 RELAXED PERFORMANCE - MINIMAL RE-
SOURCE CONTROL

It is well proven in the control theory literature, see for
example [36] among many others, that in cases, where

we have a first order model structure with an actuation
delay, a Proportional Integrator (PI) feedback controller
is sufficient to control the system, even if in reality the
system itself has a more complex dynamics and only the
general tendency of the system is captured by the first
order model. Therefore, since from equations (3) and (4)
we notice a first order system model with input delay, a
PI feedback strategy is designed.

6.1 Pl Feedback Control

In the first case we consider a simplified version of
the control architecture from Figure 8, where only the
PI feedback controller is running and the feedforward
controller is not active (Zpp = 0). The standard equation
of a sampled time PI controller is very well known in
the control theory literature (see [20]) and is given by
equation (7):

Upbry = Upb_qy T (EKp + Ki)ew) + Kiege—1)  (7)

The controllers parameters are determined to assure sta-
bility, when we close the loop with the controller, and no
overshoot. In control theory we talk of overshoot when
the system output exceeds its target before stabilizing
on a reference value. Furthermore, as we would like to
avoid a highly aggressive controller, the control response
to the disturbance is somewhat slow. The reason behind
this is the minimization of the number of changes in
the number of nodes, because of financial and energetic
constraints. Based on these requirements and the iden-
tified model given in equation (5), we mathematically
computed the value of K, = 0.0012372 and K; = 0.25584
for our controller.

Pl feedback control.

— Senvice time (y)
+.a Control reference (y)
SLO threshold

3
—— g
) — iodes @)

L L L
35 40 5 50 55

25 a 35 40 45 50 55
Control calculation instants

Fig. 11. Closed loop experiments - Feedback Control

The results are given in Figure 11 which shows our
controllers response to a 50% change in the number of
clients. We can see that as the controller is determined to
have a slow settling time, the SLA threshold is breached
for a short amount of time but the controller will al-
ways take the service time to our reference value. The
controller steadily increases the number of nodes until
service time recovers. It can also be seen that the number
of nodes to be added to the system to keep the SLA is
recomputed at each sampling interval (see the 3"¢ plot)
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and therefore is changing frequently (see the 2"¢ plot).
The control automatically computes the number of nodes
to add at each time and this number is not necessarily
the same. Since frequent cluster reconfiguration are not
desired, in Section 6.2 below, we further develop the pre-
vious algorithm to reduce the number of node changes,
while also keeping the SLA.

6.2 Event based PI control - Minimizing the nhumber
of actuations

The field of control in Big Data cloud environments
brings us specific control constraints. The adding and
removing of resources takes considerable time and has
energetic and financial costs. We therefore want to avoid
as much as possible such quick changes in the control
signal. One approach to minimize the number of actua-
tions can be found in the event-based control theory.

Event-based controllers have emerged recently as a
viable alternative to periodic controllers when it comes
to handling constraints on the number of actuations,
limited communication or computation bandwidth, con-
straints on power consumption, etc [37], [38]. The basic
idea behind this theory is that we don’t need to calcu-
late a new control value with every new measurement,
instead the control is calculated only when the system
output changes more than a certain threshold, since the
last actuation. This concept is illustrated in Figure 12
where a simple example is shown to clarify the difference
between the control instants of time-based and event-
based controllers. For a more detailed view of event-
based control theory see [39], [37], [38].

3
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Fig. 12. Difference between time based and event-based

control instants.

Figure 12 shows us that, while the control instants of
time-based control follow a fixed time period ¢;; —t;, for
the event-based case the control is calculated only when
the system output changes more than a fixed threshold
value ej;,. The Y axis in this simple case can be any
feedback signal used for control purposes.

For the case of controlling cloud resources we see
the main advantage of using event based controllers in
minimizing the number of actuations. This minimization
can be done using the extra tuning parameter introduced
by the event based controller, namely the error threshold
limit ej;,,. This value can be used to minimize the
actuation count while still retaining acceptable perfor-
mance. The PI control architecture using the event-based
approach can be seen in Figure 13.

Event-based

algorithm
Reference
service time Service time
velk) 4 elk) unfk) vik)

#nodes
Zpj YMR

Pl controller MapReduce System

y(k)

Fig. 13. Event-based PI feedback Control Architecture

We can see that the event-based module functions act
as a switch in the system that, when activated allows
for a new control value to be calculated. In the case
of our implementation the event-based algorithm is the
following: a new control value is calculated only if the
difference between the current error and last error value
for which control was calculated is greater than this
threshold ey;,,. The detailed description of the structure
for the event based PI controller is in [40]. Starting from
their results, we use an exponential forgetting factor
to limit the impact of the integrator component, after
periods of long inactivity, on the control signal. Finally
our event-based PI controller developed is governed by
equation (8):

Upi = Up + U, where
up, =Kp-e 8
u; = ui—1 + Ki - f(€; €rim, Tact);

where ¢ is the error and e¢;;,, is the event threshold.
As soon as the error becomes larger that this threshold,
the control value is updated. u, and u, are respectively
the proportional and integral terms of the control. K,
and K; are respectively the proportional and integral
coefficient of the PI controller. f is a function that gathers
a forgetting strategy that the event-based implementa-
tion requires (see [40] for further informations). Finally,
Toct denotes the time elapsed since the last update of
the control value. The control parameters for the event
based PI are the same as the ones calculated for the
fixed sampled PI controller. The parameter e, is found
as the maximum value for which performance is still
acceptable. The results of implementing the Event Based
PI controller on the same system as previously described
are given in Figure 14.

We see that the event based PI controller also manages
to keep the service time below the threshold in the pres-
ence of perturbation just like the classical PI controller.
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Control

One can also see that, when comparing Figure 11 with
Figure 14, the control signal to be applied is computed
only several times and the amount of switches in the
nodes number is therefore drastically diminished as well.
We have reduced by half the changes in system nodes (4
changes with the event based controller compared to 8
without). Although the performance is just a bit worse,
its benefits are that it brings less energetic cost for the
cloud provider and less financial cost for the user.

7 STRICT PERFORMANCE - FEEDFORWARD

CONTROL

To satisfy strict performance constraints a fast feedfor-
ward control strategy is designed, to pro-actively reject
the disturbance before its effect is observed on the out-
put. In our case the disturbance represents a change in
the number of concurrent clients. The purpose of this
controller is to create a control signal that, once it has
passed through the plant, cancels out the effect of the
disturbance. If the model is 100% accurate the net effect
on the service time should be zero, but because of the
inherent model uncertainties this is never the case in
practice. Our controller is determined using the standard
feedforward formula

Zpp(z) = —yn(2) " 'ye(2)

where Z;; is the discrete time feedforward controller
and yn, yco are the discrete time models from Figure 5.
The equation of the computed feedforward controller is
given in equation (9):

Uff gy = 0.791 “UFF(k—1) —|—5.97'd(k_2) —5.486~d(k_3) 9)

The effect of adding the feedforward control to the
already existent feedback controller can be seen in Fig-
ure 15. One can observe that although so far we have
tested our controllers with a jump of 50% more clients,
here we test our control with worst conditions, a jump
of 100% more clients, to highlight the effectiveness of
feedforward control in comparison to just feedback con-
trol. While the feedback control shortly breached the SLO
even with a 50% increase, by adding the feedforward

Pl feedback + feedforward control. 100% more clients are added.
T T T T

w
a
o

T
Service time (y)

L 3001 - — . — - Control reference (y,) i
g SLO threshold
= 250 b
8 200t g
2
o 150
n
100 . . . . .
5 10 15 20 25 30
30 .
@2 20t P
c -
2 1
iof-=mmmmm - !
120
o . . . . T 10
[o] 5 10 15 20 25 30

Time (min)

Fig. 15. Closed loop experiments - Feedback and Feed-
forward Control

component we can see that the controller response is
increased and manages to keep the response time below
the SLA threshold all the time even if we double the
current workload. Furthermore, the feedback term com-
pensates for all the model uncertainties that were not
considered when calculating the feedforward one and
assures that the steady state error converges to 0. This
comes though with a cost, the increase in the number
of nodes that are utilized. The number of nodes to be
added is also recomputed at each sampling interval and
therefore it is not plotted again.

8 RELATED WORK

In this section we overview the different approaches
to model and control the performance of MapReduce
systems.

8.1

Many studies have been already performed on how to
model the performance of the MapReduce framework.
These can be grouped together into the following cate-
gories. Analytical or first principle models are detailed
MapReduce models that capture the inner workings of
the different phases of a classical Hadoop MapReduce
job execution flow, see [41], [42], [43]. Vianna et al. [44]
propose a hierarchical model that combines a precedence
graph with a queueing network to model the intra-job
synchronisation constraints. Some as Jockey [45] use a
simulator that captures the complex interdependencies
of a job and makes use of previous runtime statistics
to predict job runtime. On the opposite side there are
the regression and black box models. These are coarse
grained models that don’t try to capture the specificities
of the MapReduce framework but instead build upon job
profiling, namely predicting the response time of future
jobs based on past experience or exploratory runs. In the
latter case the model parameters are generally found by

Mapreduce performance modelling
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running the job on smaller set of the input data and us-
ing regression techniques to identify model parameters.
The differences between these regressive approaches lies
mostly in the components used to set up the regressive
model. Some authors develop statistical models made
of several performance invariants such as the average,
maximum and minimum run times of the different job
cycles [27], [26]. As most MapReduce jobs are batch jobs
that are run frequently, some propose building a profile
database [27] to predict job runtime. Others employ a
static linear model that captures the relationship between
job runtime, input data size and the resources allocated
for the job [28]. Furthermore, there are those who analyse
long term traces to classify jobs into several runtime
categories, for example from a 10-months logs of Yahoo's
M45 supercomputing clusters running MapReduce. They
use two separate algorithms for the prediction of service
completion times: a distance-weighted average algo-
rithm and a locally-weighted linear regression method.
The linear regression based method was proven to scale
better for varying input sizes, see Kavulya [35]. Pri-
mary Component Analysis has been also used to de-
termine the MapReduce/Hadoop components that have
the biggest influence on performance of MapReduce jobs
[32]. This approach mixes the non-application specific
Hadoop configuration parameters with the statistical
averages collected from the traces of previous job runs.
They find that as different applications have varying
CPU, network bandwidth, data storage requirements,
the use clustering analysis is advised to group jobs and
build a separate model for every group to achieve better
model performances.

However, all the presented models are job level models
and therefore cannot capture the effects of workload
variations in a MapReduce cluster. Furthermore, all these
models are static models and don’t capture the dynamics
of a MapReduce system, namely what happens during
a workload change until the system reaches its new
steady state. Meanwhile, the many years of experience
in building control algorithms for physical systems has
shown that capturing the dynamics of the system is
crucial to know when and how to control.

8.2

There exist many attempts to improve upon MapReduce
performance either through framework modifications or
by optimizing the framework parameters. Sailfish [46] is
a new MapReduce framework that, by aggregating in-
termediate data, improves performance by batching disk
I/0. Hadoop++ [47] improves job performance for ana-
lytical queries using a new non-invasive indexing tech-
nique. Yarn [48] brings several performance improve-
ments while supporting additional processing models.
However, non of these framework provides any control
mechanism than can guarantee performance in face of
a varying workload. Furthermore, with the advent of
cloud solution, there are many projects on improving

Improving the MapReduce Framework

MapReduce performance in the cloud. Spark [19], for
example, generalises the MapReduce model and can
deal with new workload such as streaming, iterative
algorithms and interactive queries. Although it is not yet
as mature as Hadoop it has been shown to outperform
Hadoop by a couple of orders of magnitude in many
cases. AsterixDB [17] is a new Big Data Management
System that stores, indexes and manages semi-structured
data. Because of its knowledge of data partitioning and
indexing it can avoid to always scan data to process
queries. Stratosphere [18] further extends the MapRe-
duce model, allowing for more operators than just map
and reduce and does much better on iterative algorithms
than traditional Hadoop. Furthermore, due the general-
ity of the algorithms developed in this paper, they can
be applied to any of the previously listed frameworks to
guarantee performance requirements.

8.3 Guaranteeing MapReduce Performance

By guaranteeing MapReduce performance we think of
the on-line adaptation of frameworks resources or any
of its parameters to achieve the required job deadlines.
For example SteamEngine [49] introduces an on-line per-
formance and energy optimization algorithm for MapRe-
duce applications running on virtualised clusters, such
as Amazon EC2. It makes use of both off-line and on-line
job profiling to predict job finish times. The performance
optimization is done by regularly predicting the job
finish time and using a simple heuristic to control the
amount of resources available for tasks. Namely, if the
predicted finish time, at any time of the job life-cycle, is
more than the expected finish time then the algorithm
increases the amount of resources (adds more nodes)
through cluster scaling. The cluster scaling optimization
is done only in the map phase, and the earlier it's done
the better is the improvement. Verma [50] proposes
ARIA, an automatic resource inference and allocation
engine for MapReduce. ARIA can, at run time, allocate
the appropriate resources (slots) to a job so that the
job meets its time constraints. Jockey [45] monitors job
performance and dynamically adjusts its resources to
maximise economic utility, while minimising its impact
on the rest of the cluster. While all the previous ap-
proaches propose fine grained job level performance
control at a scheduler level, we propose to add course
grained control by controlling the average performance
of a group of jobs in the cluster. Furthermore, while
these methods require modifying the schedulers and
algorithms deployed by the MapReduce cluster, our
control architecture is non-invasive and can be used in
parallel with any of the previous listed scheduling algo-
rithms. Moreover our algorithm can be easily automated
to be used by an average user with their distribution,
without an in depth knowledge of the inner workings
of the MapReduce framework. While the fine grained
scheduling techniques optimise the resource usage of
the current resources, our course grained technique can
handle workload spikes and fluctuations.
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9 CONCLUSIONS AND FUTURE WORK

This paper presents the design, implementation and
evaluation of the first algorithm for creating dynamic
performance models for Big Data MapReduce systems.
Moreover we identify two major performance constraint
use cases: relaxed - performance, minimal resource and
strict performance constraints. For the first case we de-
velop and implement a PI feedback control mechanism.
To further minimize the number of control actuations,
an event-based feedback controller is introduced as well.
With the latter, the changes in the number of nodes is
diminished considerably, while the performance is kept
at almost the same level. For the second case we develop
and implement a feedforward controller that efficiently
suppresses the effects of large workload size variations.
All the control algorithms are validated online on a real
60 node MapReduce cluster, running a data intensive
Business Intelligence workload. Our experiments show
that the controllers are successful in keeping the perfor-
mance constraints set in the service level agreement.
Further investigations are necessary in some areas and
are studied now, such as:
1) implementing the control framework in an on-line
cloud such as Amazon EC2.
2) improve upon the strict performance constrained
control with event-based techniques.
3) develop an on-line identification mechanism
4) add other metrics to our model such as throughput,
availability, reliability.
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