HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

High-harmonic phase spectroscopy using a binary diffractive optical element

A. Camper 1, 2 T. Ruchon 1, 2 D. Gauthier 3, 4 O. Gobert 1 P. Salières 1, 2 B. Carré 1, 2 T. Auguste 1, 2
2 ATTO - Attophysique
IRAMIS - Institut Rayonnement Matière de Saclay, LIDyl - Laboratoire Interactions, Dynamiques et Lasers (ex SPAM)
Abstract : We report on high-order harmonic generation (HHG) using a Ti:sapphire laser beam phase shaped with a binary diffractive optical element (DOE) to create two spatially separated synchronized HHG sources at the focus of a lens. Using full three-dimensional computations, we show numerically that the harmonic dipole phase is imprinted in the resulting far-field fringe pattern. Using the corresponding experimental arrangement, we measure HHG phase in aligned carbon dioxide. This arrangement is robust, extremely stable, simple to use, and gives highly resolved fringes. It thus opens new perspectives for combined and refined HHG phase measurements in excited samples.
Document type :
Journal articles
Complete list of metadata

Contributor : Caroline Lebe Connect in order to contact the contributor
Submitted on : Friday, April 1, 2016 - 3:41:02 PM
Last modification on : Monday, February 21, 2022 - 8:24:07 AM


  • HAL Id : hal-01296799, version 1



A. Camper, T. Ruchon, D. Gauthier, O. Gobert, P. Salières, et al.. High-harmonic phase spectroscopy using a binary diffractive optical element. Physical Review A, American Physical Society, 2014, 89 (4), pp.043843. ⟨hal-01296799⟩



Record views