Travel time forecasting from clustered time series via optimal fusion strategy

Andres Ladino 1 Alain Kibangou 1 Hassen Fourati 1 Carlos Canudas de Wit 1
1 NECS - Networked Controlled Systems
Inria Grenoble - Rhône-Alpes, GIPSA-DA - Département Automatique
Abstract : This paper addresses the problem of travel time forecasting within a highway. Several measurements are captured describing travel times for multiple origin-destination (OD) pairs. A network model is then proposed to infer travel time between origin and destination based on a reduced number of states. The forecast strategy is based on current day and historical data. Historical data is organized into several clusters. For each cluster, a predictor is designed based on the Kalman filtering strategy. Then these predictions are fused, in a best linear unbiased estimation sense, in order to get the best prediction. The performance of the proposed method is evaluated using traffic data from the South Ring of the Grenoble city in France.
Type de document :
Communication dans un congrès
15th European Control Conference (ECC 2016), Jun 2016, Aalborg, Denmark. 〈10.1109/ECC.2016.7810623〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01296525
Contributeur : Andres Ladino <>
Soumis le : vendredi 1 avril 2016 - 10:04:44
Dernière modification le : vendredi 24 novembre 2017 - 13:31:10
Document(s) archivé(s) le : lundi 14 novembre 2016 - 11:42:02

Fichier

ECC16_TT_Forecast_Fusion.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Andres Ladino, Alain Kibangou, Hassen Fourati, Carlos Canudas de Wit. Travel time forecasting from clustered time series via optimal fusion strategy. 15th European Control Conference (ECC 2016), Jun 2016, Aalborg, Denmark. 〈10.1109/ECC.2016.7810623〉. 〈hal-01296525〉

Partager

Métriques

Consultations de la notice

350

Téléchargements de fichiers

370