
HAL Id: hal-01296435
https://hal.science/hal-01296435

Preprint submitted on 31 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

P VERSUS NP
Frank Vega

To cite this version:

Frank Vega. P VERSUS NP. 2016. �hal-01296435�

https://hal.science/hal-01296435
https://hal.archives-ouvertes.fr

P VERSUS NP

FRANK VEGA

Abstract. P versus NP is one of the most important and unsolved problems
in computer science. This consists on knowing the answer of the following

question: Is P equal to NP? This incognita was first mentioned in a letter

written by Kurt Gödel to John von Neumann in 1956. However, the precise
statement of the P versus NP problem was introduced in 1971 by Stephen

Cook. Since that date, all efforts to find a proof for this huge problem have
failed. It is currently accepted that a positive answer for P versus NP would

have tremendous effect not only in computer science, but also in mathematics,

biology, etc.
We consider two new complexity classes that are called equivalent-P and

equivalent-NP which have a close relation to this problem. The class equivalent-

P contains those languages that are ordered-pairs of instances of two specific
problems in P, such that the elements of each ordered-pair have the same so-

lution, which means, the same certificate. The class equivalent-NP has almost

the same definition, but in each case we define the pair of languages explicitly
in NP. We demonstrate that equivalent-P = equivalent-NP, but this brings as

a consequence that P is equal to NP.

Introduction

P versus NP is a major unsolved problem in computer science. This problem
was introduced in 1971 by Stephen Cook [2]. It is considered by many to be the
most important open problem in the field [5]. It is one of the seven Millennium
Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000
prize for the first correct solution [5].

In 1936, Turing developed his theoretical computational model [10]. The de-
terministic and nondeterministic Turing machines have become in two of the most
important definitions related to this theoretical model for computation. A de-
terministic Turing machine has only one next action for each step defined in its
program or transition function [12]. A nondeterministic Turing machine could con-
tain more than one action defined for each step of its program, where this one is
no longer a function, but a relation [12].

Another huge advance in the last century has been the definition of a complexity
class. A language over an alphabet is any set of strings made up of symbols from
that alphabet [3]. A complexity class is a set of problems, which are represented as
a language, grouped by measures such as the running time, memory, etc [3].

In the computational complexity theory, the class P contains those languages
that can be decided in polynomial-time by a deterministic Turing machine [8]. The
class NP consists on those languages that can be decided in polynomial-time by a
nondeterministic Turing machine [8].

2000 Mathematics Subject Classification. 68-XX, 68Qxx, 68Q15.
Key words and phrases. P, NP, NP-complete, polynomial-time verifier.

1

2 FRANK VEGA

The biggest open question in theoretical computer science concerns the relation-
ship between these classes:

Is P equal to NP?
In 2002, a poll of 100 researchers showed that 61 believed that the answer was

not, 9 believed that the answer was yes, and 22 were unsure; 8 believed the question
may be independent of the currently accepted axioms and so impossible to prove
or disprove [7].

The complexity class NP–complete was defined by Cook in his seminal paper [2].
The class NP-complete is a set of problems of which any other NP problem can be
reduced in polynomial-time, but whose solution may still be verified in polynomial-
time [8]. If any single NP–complete problem can be solved in polynomial-time,
then every NP problem has a polynomial-time algorithm [3]. All efforts to find
polynomial-time algorithms for the NP–complete problems have failed [5].

We will define two new complexity classes that will be called equivalent-P and
equivalent-NP and denoted as ≡ P and ≡ NP respectively. Moreover, we will prove
that every problem in NP is also in ≡ NP and each problem in equivalent-NP is
in NP too. In this way, we conclude that both classes, NP and ≡ NP , are equal.
Besides, we will show the complexity class ≡ P is closed under reductions. We will
also prove that there is an NP-complete problem in ≡ P . In this way, all languages
in NP are reduced to ≡ P , but this implies NP ⊆≡ P due to ≡ P is closed under
reductions. Since we also demonstrate that ≡ P ⊆ NP , then we can sustain that
≡ P = NP . Consequently, we show that ≡ P is equal to ≡ NP . Then, this would
also imply that P = NP .

1. Basic theoretical notions

1.1. The class NP-complete. We define {0, 1}∗ as the infinite set of binary
strings [3]. We say that a language L1 is polynomial-time reducible to a lan-
guage L2, written L1 ≤p L2, if there is a polynomial-time computable function
f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP-complete [8]. A language L ⊆ {0, 1}∗ is
NP-complete if

(1) L ∈ NP , and
(2) L′ ≤p L for every L′ ∈ NP .

Furthermore, if L is a language such that L′ ≤p L for some L′ ∈ NP-complete,
then L is in NP-hard [3]. Moreover, if L ∈ NP , then L ∈ NP-complete [3]. No
polynomial-time algorithm has yet been discovered for any NP-complete problem
[5].

A principal NP-complete problem is SAT [6]. An instance of SAT is a Boolean
formula φ which is composed of

(1) Boolean variables: x1, x2, . . . , xn;
(2) Boolean connectives: Any Boolean function with one or two inputs and one

output, such as ∧(AND), ∨(OR), ⇁(NOT),⇒(implication),⇔(if and only
if);

(3) and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in
φ. A satisfying truth assignment is a truth assignment that causes φ to be evaluated

P VERSUS NP 3

as true. A formula with a satisfying truth assignment is a satisfiable formula. The
problem SAT asks whether a given Boolean formula is satisfiable [6].

Another NP-complete language is 3CNF satisfiability, or 3SAT [3]. We define
3CNF satisfiability using the following terms. A literal in a Boolean formula is
an occurrence of a variable or its negation. A Boolean formula is in conjunctive
normal form, or CNF , if it is expressed as an AND of clauses, each of which is the
OR of one or more literals. A Boolean formula is in 3-conjunctive normal form or
3CNF , if each clause has exactly three distinct literals.

For example, the Boolean formula

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains
the three literals x1, ⇁ x1, and ⇁ x2. In 3SAT , it is asked whether a given Boolean
formula φ in 3CNF is satisfiable.

It can be demonstrated that many problems belong to NP-complete using the
polynomial-time reduction from 3SAT [6]. For example, the well known problem
ONE-IN-THREE 3SAT which is defined as follows: Given a Boolean formula φ in
3CNF , is there a truth assignment such that each clause in φ has exactly one true
literal?

1.2. Problems in P. Another special case is the class of problems where each
clause contains XOR (i.e. exclusive or) rather than (plain) OR operators. This is
in P , since a XOR SAT formula can also be viewed as a system of linear equations
mod 2, and can be solved in cubic time by Gaussian elimination [11]. We represent
the XOR function inside a Boolean formula as ⊕. The problem XOR 3SAT will be
equivalent to XOR SAT, but the clauses in the Boolean formula have exactly three
distinct literals. Since a⊕b⊕c is evaluated as true if and only if exactly 1 or 3 mem-
bers of {a, b, c} are true, then each solution of the problem ONE-IN-THREE 3SAT
for a given 3CNF formula is also a solution of the problem XOR 3SAT and in turn
each solution of XOR 3SAT is a solution of 3SAT .

In addition, a Boolean formula is in 2-conjunctive normal form, or 2CNF , if it
is in CNF and each clause has exactly two distinct literals. There is a well known
problem called 2SAT . In 2SAT , it is asked whether a given Boolean formula φ in
2CNF is satisfiable. This language is in P [1].

2. Definition of ≡ P

Let L be a language and M a Turing machine. We say that M is a verifier for
L if L can be written as

L = {x : (x, y) ∈ R for some y}

where R is a polynomially balanced relation decided by M [12]. According to
Cook’s Theorem, a language L is in NP if and only if it has a polynomial-time
verifier [12].

Definition 2.1. We say that a language L belongs to ≡ P if there are two languages
L1 ∈ P and L2 ∈ P and two deterministic Turing machines M1 and M2, where M1

and M2 are the polynomial-time verifiers of L1 and L2 respectively, such that

L = {(x, y) : ∃z such that M1(x, z) = “yes” and M2(y, z) = “yes”}.

4 FRANK VEGA

We will call the complexity class ≡ P as “equivalent-P”. We will represent the
language L in ≡ P , which consists on the pairs of instances (x, y) where x ∈ L1

and y ∈ L2, as (L1, L2). The order of the pairs of instances of a problem ≡ P is
really important, because we will not consider the languages (L1, L2) and (L2, L1)
as equal when L1 6= L2.

3. Reduction in ≡ P

We say that a language L1 is logarithmic-space reducible to a language L2, if
there is a logarithmic-space computable function f : {0, 1}∗ → {0, 1}∗ such that for
all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic-space reduction is frequently used for P and below [12]. There
is a different kind of reduction for ≡ P : the e-reduction.

Definition 3.1. Given two languages L1 and L2, where the instances of L1 and
L2 are ordered-pairs of strings, we say that the language L1 is e-reducible to the
language L2, written L1 ≤≡ L2, if there are two logarithmic-space computable func-
tions f : {0, 1}∗ → {0, 1}∗ and g : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗
and y ∈ {0, 1}∗,

(x, y) ∈ L1 if and only if (f(x), g(y)) ∈ L2.

We say that a complexity class C is closed under reductions if, whenever L1 is
reducible to L2 and L2 ∈ C, then L1 ∈ C [12].

Theorem 3.2. ≡ P is closed under reductions.

Proof. Let L and L′ be two arbitrary languages, where their instances are ordered-
pairs of strings. Suppose that L ≤≡ L′ where L′ is in ≡ P . We will show that L is
in ≡ P too.

By definition of ≡ P , there are two languages L′1 ∈ P and L′2 ∈ P , such that
for each (v, w) ∈ L′ we have that v ∈ L′1 and w ∈ L′2. Moreover, there are two
Turing machines M ′1 and M ′2 which are the polynomial-time verifiers of L′1 and
L′2 respectively. For each (v, w) ∈ L′, there will be a succinct certificate z, such
that M ′1(v, z) = “yes” and M ′2(w, z) = “yes”. Besides, by definition of e-reduction,
there are two logarithmic-space computable functions f : {0, 1}∗ → {0, 1}∗ and
g : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗ and y ∈ {0, 1}∗,

(x, y) ∈ L if and only if (f(x), g(y)) ∈ L′.
Based on this preliminary information, we can support that there are two lan-

guages L1 ∈ P and L2 ∈ P , such that for each (x, y) ∈ L we have that x ∈ L1

and y ∈ L2. Indeed, we can define L1 and L2 as the ordered-pairs of strings
(f−1(v), g−1(w)), such that f−1(v) ∈ L1 and g−1(w) ∈ L2 if and only if v ∈ L′1
and w ∈ L′2. Certainly, for all x ∈ {0, 1}∗ and y ∈ {0, 1}∗, we can decide whether
x ∈ L1 or y ∈ L2 in polynomial-time just verifying that f(x) ∈ L′1 or g(y) ∈ L′2
respectively, since L′1 ∈ P , L′2 ∈ P , and SPACE(log n) ∈ P [12].

Furthermore, there are two deterministic Turing machines M1 and M2 which are
the polynomial-time verifiers of L1 and L2 respectively. For each (x, y) ∈ L, there
will be a succinct certificate z such that M1(x, z) = “yes” and M2(y, z) = “yes”.
Indeed, we can know whether M1(x, z) = “yes” and M2(y, z) = “yes” just verifying
whether M ′1(f(x), z) = “yes” and M ′2(g(y), z) = “yes”. Certainly, for every triple

P VERSUS NP 5

of strings (x, y, z), we can define the polynomial-time computation from the verifiers
M1 and M2 as M1(x, z) = M ′1(f(x), z) and M2(y, z) = M ′2(g(y), z), since we can
evaluate f(x) and g(y) in polynomial-time because of SPACE(log n) ∈ P [12]. In
addition, max(|f(x)|, |g(y)|) is polynomially bounded by min(|x|, |y|) where | . . . |
is the string length function, due to the logarithmic-space computable functions f
and g cannot produce an exponential amount of symbols in relation to the size of
the input. Consequently, |z| is polynomially bounded by min(|x|, |y|), because |z|
would be polynomially bounded by min(|f(x)|, |g(y)|). Hence, we have just proved
the necessary properties to state that L would be in ≡ P . �

4. ≡ P = NP

Theorem 4.1. ≡ P ⊆ NP .

Proof. Every instance (x, y) ∈ L of a language L in ≡ P can always be checked
by a polynomial-time verifier M . The existence of a polynomial-time verifier for
a language is sufficient to show that this language is in NP [12]. Certainly, we
will always obtain a succinct certificate z such that M(x, y, z) = “yes” for every
ordered-pair of instances (x, y) ∈ L. Indeed, we can define M as M(x, y, z) = “yes”
if and only if M1(x, z) = “yes” and M2(y, z) = “yes”. Since M1 and M2 are the
polynomial-time verifiers of Definition 2.1, then L ∈ NP . �

We will define ≡ ONE-IN-THREE 3SAT as follows,

≡ ONE-IN-THREE 3SAT = {(φ, φ) : φ ∈ ONE-IN-THREE 3SAT}.

Theorem 4.2. ≡ ONE-IN-THREE 3SAT ∈ NP-complete.

Proof. Given a Boolean formula φ in 3CNF , we can make a simple polynomial-time
reduction from ONE-IN-THREE 3SAT as follows,

φ ∈ ONE-IN-THREE 3SAT if and only if (φ, φ) ∈≡ ONE-IN-THREE 3SAT.

≡ ONE-IN-THREE 3SAT is in NP , because ONE-IN-THREE 3SAT is in NP
too. Since we have already proved that ≡ ONE-IN-THREE 3SAT is in NP-hard
and ≡ ONE-IN-THREE 3SAT must be in NP , then ≡ ONE-IN-THREE 3SAT ∈
NP-complete. �

Definition 4.3. 3XOR-2SAT is a problem in ≡ P , where every instance (ψ,ϕ)
is an ordered-pair of Boolean formulas, such that if (ψ,ϕ) ∈ 3XOR-2SAT, then
ψ ∈ XOR 3SAT and ϕ ∈ 2SAT . By the definition of ≡ P , this language will be the
ordered-pairs of instances of XOR 3SAT and 2SAT such that they would have the
same satisfying truth assignment using the same variables.

Theorem 4.4. ≡ 3XOR-2SAT ∈ NP-complete.

Proof. Given an arbitrary Boolean formula φ in 3CNF of m clauses, we will iterate
for i = 1, 2, 3, . . . ,m over each clause ci = (x ∨ y ∨ z) in φ, where x, y and z are
literals, creating the following formulas,

Qi = (x⊕ y ⊕ z)

Pi = (⇁ x∨⇁ y) ∧ (⇁ y∨⇁ z) ∧ (⇁ x∨⇁ z).

Since Qi is evaluated as true if and only if exactly 1 or 3 members of {x, y, z} are
true and Pi is evaluated as true if and only if exactly 1 or 0 members of {x, y, z}

6 FRANK VEGA

are true, then we obtain the clause ci has exactly one true literal if and only if both
formulas Qi and Pi have the same satisfying truth assignment.

Hence, we can construct the Boolean formulas ψ and ϕ as the conjunction of Qi

or Pi for every clause ci in φ, that is, ψ = Q1 ∧ . . . ∧ Qm and ϕ = P1 ∧ . . . ∧ Pm.
Finally, we obtain that,

(φ, φ) ∈≡ ONE-IN-THREE 3SAT if and only if (ψ,ϕ) ∈ 3XOR-2SAT.

Moreover, there are two logarithmic-space computable functions f : {0, 1}∗ →
{0, 1}∗ and g : {0, 1}∗ → {0, 1}∗ such that f(〈φ〉) = 〈ψ〉 and g(〈φ〉) = 〈ϕ〉. Indeed,
we only need a logarithmic-space to analyze every time each clause ci in the input
φ and generate Qi or Pi to the output, since the complexity class SPACE(log n)
will not take the length of the input and the output into consideration [12]. Then,
we have proved that ≡ ONE-IN-THREE 3SAT ≤≡ 3XOR-2SAT.

The e-reduction is also a polynomial-time reduction, since SPACE(log n) ∈ P .
Consequently, ≡ 3XOR-2SAT is in NP-hard due to the previous e-reduction from
≡ ONE-IN-THREE 3SAT. Moreover, as result of Theorem 4.1, we obtain that
≡ 3XOR-2SAT is in NP , and therefore, ≡ 3XOR-2SAT is in NP-complete. �

Theorem 4.5. ≡ P = NP .

Proof. Since ≡ 3XOR-2SAT is complete for NP , thus all language in NP reduce to
≡ P . Since ≡ P is closed under reductions, it follows that NP ⊆≡ P . The inclusion
≡ P ⊆ NP follows from Theorem 4.1. Hence, if ≡ P ⊆ NP and NP ⊆≡ P , then
≡ P = NP [3]. �

5. P = NP

Definition 5.1. We say that a language L belongs to ≡ NP if there are two
languages L1 ∈ NP and L2 ∈ NP and two deterministic Turing machines M1 and
M2, where M1 and M2 are the polynomial-time verifiers of L1 and L2 respectively,
such that

L = {(x, y) : ∃z such that M1(x, z) = “yes” and M2(y, z) = “yes”}.
We will call the complexity class ≡ NP as “equivalent-NP”. Indeed, this definition
fulfills the same parameters than Definition 2.1, except that in this one the pairs of
languages are explicitly in NP .

Theorem 5.2. ≡ NP = NP .

Proof. A language L in ≡ NP will always have a polynomial-time verifier M .
Certainly, for every ordered-pair of instances (x, y) ∈ L there is always a succinct
certificate z such that M(x, y, z) = “yes”, because we can define M as M(x, y, z) =
“yes” if and only if M1(x, z) = “yes” and M2(y, z) = “yes”. Since M1 and M2 are
the polynomial-time verifiers of Definition 5.1, then L ∈ NP . Indeed this proof is
the same as Theorem 4.1, except that in this one there is a change in the classes,
that is, P is replaced by NP in this case. Hence, we obtain that ≡ NP ⊆ NP .

We can also transform every language L ∈ NP as follows,

≡ L = {(x, y) : xy ∈ L and |x| = b |xy|
2
c,|y| = d |xy|

2
e}.

where xy is the concatenation of the strings x and y and | . . . |, b. . .c and d. . .e are
the string length, floor and ceiling functions respectively. For the short strings xy
in L which consist on only one symbol, the value of x can be the empty string.

P VERSUS NP 7

We can also define the language ≡ L as the ordered-pairs of instances of two
languages L1 and L2, such that L1 would contain the first half part of the elements
in L while L2 would have the second half part. L1 and L2 would be in NP , because
the membership in L1 of the first half part x1 from an element x ∈ L can be verified
in polynomial-time using as certificate the strings x and z where z would also be
the certificate of x. The same happens with the second half part x2, because we can
also check it in polynomial-time with x and z too. Certainly, they would use the
certificate x to check when x1 or x2 is the half part of the string x, and they would
use the certificate z to prove that x is in L. Furthermore, the strings x and z would
be polynomially bounded by x1 and x2 due to |x| ≤ (2× |x1|+ 1) ≤ (2× |x2|+ 1).
Since z is polynomially bounded by x, then it would be polynomially bounded by
x1 and x2 too. Consequently, ≡ L will be in ≡ NP , because the ordered-pairs of
instances (x1, x2) would have the same certificate, that is the strings x and z, when
x ∈ L and z is the certificate of x. However, every instance (x, y) of ≡ L can be
represented by the string xy, because we can easily recognize x and y from xy since

|x| = b |xy|
2
c and |y| = d |xy|

2
e.

Nevertheless, if we represent it in this way, then ≡ L = L, and thus, L would be
in ≡ NP . Since we took L as an arbitrary language in NP , then it follows that
NP ⊆≡ NP . Hence, if ≡ NP ⊆ NP and NP ⊆≡ NP , then ≡ NP = NP [3]. �

Let A and B be subsets of {0, 1}∗. We define the join, A ⊕ B, as the union of
{0x : x ∈ A} and {1y : y ∈ B} [4].

Theorem 5.3. P = NP .

Proof. As result of Theorems 4.5 and 5.2, we obtain that ≡ P is equal to ≡ NP .
This means that there is one bijective function h :≡ NP →≡ P , because both
classes are equal [9]. For every language L in NP , we can create one language
(L,L) in ≡ NP , such that an instance (x, y) is in (L,L) if and only if x = y and
x ∈ L. Since the certificate of x ∈ L will be the same one of (x, x) ∈ (L,L), then
(L,L) will never be an empty language when L is not an empty set. By the bijective
definition of h, (L,L) is connected to a single language (L1, L2) in ≡ P , where (L,L)
would be the unique language in ≡ NP that is related to (L1, L2) through h. Hence,
there will be an injective and total function f : NP → P , because we can always
make a connection between this unique and arbitrary language L in NP with the
following language L′ = L1⊕L2 in P , since L1 ∈ P , L2 ∈ P , and P is closed under
joins [4]. Certainly, the bijective definition of h guarantees the injective property
of the function f . Moreover, if there are two languages L3 ∈ P and L4 ∈ P such
that L′ = L3 ⊕L4, then L1 = L3 and L2 = L4, because the join between sets is an
injective function too [4].

On the other hand, there is another injective and total function g : P → NP ,
that will be the identity function over the languages in P . Certainly, we can define
g as g(L) = L for every language L ∈ P , because a language L in P will also be
in NP and the identity function is always injective [12]. However, the existence of
these two injective and total functions implies that P and NP will have the same
cardinality when we apply the Schröder Bernstein Theorem [9]. Nevertheless, we
already know that P ⊆ NP , and therefore, if P and NP have the same cardinality,
then we can conclude that P = NP . �

8 FRANK VEGA

Conclusions

After decades of studying the NP problems no one has been able to find a
polynomial-time algorithm for any of more than 300 important known NP–complete
problems [6]. Even though this proof might not be a practical solution, it shows in
a formal way that many currently mathematical problems can be solved efficiently,
including those in NP–complete.

At the same time, this demonstration would represent a very significant advance
in computational complexity theory and provide guidance for future research. On
the one hand, it proves that most of the existing cryptosystems such as the public-
key cryptography are not safe [8]. On the other hand, we will be able to find a
formal proof for every theorem which has a proof of a reasonable length by a feasible
algorithm.

Acknowledgement

I thank Professor Magda La Serna for her English Lessons.

References

1. Bengt Aspvall, Michael F. Plass, and Robert E. Tarjan, A Linear-Time Algorithm for Testing
the Truth of Certain Quantified Boolean Formulas, Information Processing Letters 8 (1979),

no. 3, 121–123.

2. Stephen A. Cook, The complexity of theorem-proving procedures, Proceedings of the 3rd IEEE
Symp. on the Foundations of Computer Science, 1971, pp. 151–158.

3. Thomas H. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction

to Algorithms, 2 ed., MIT Press, 2001.
4. Lance Fortnow, The Union of Complexity Classes, 2002, available at http://blog.

computationalcomplexity.org/2002/11/union-of-complexity-classes.html.
5. , The Status of the P versus NP Problem, Communications of the ACM 52 (2009),

no. 9, 78–86.

6. Michael R. Garey and David S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, 1 ed., San Francisco: W. H. Freeman and Company, 1979.

7. William I. Gasarch, The P=?NP poll, SIGACT News 33 (2002), no. 2, 34–47.

8. Oded Goldreich, P, Np, and Np-Completeness, Cambridge: Cambridge University Press,
2010.

9. Arie Hinkis, Proofs of the Cantor-Bernstein theorem. A mathematical excursion, vol. 45,

Heidelberg: Birkhäuser/Springer, 2013.
10. David Leavitt, The man who knew too much: Alan turing and the invention of the computer,

Nueva York: W. W. Norton, 2006.
11. Cristopher Moore and Stephan Mertens, The Nature of Computation, Oxford University

Press, 2011.

12. Christos H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

