A glucose-starvation response regulates the diffusion of macromolecules - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue eLife Année : 2016

A glucose-starvation response regulates the diffusion of macromolecules

Résumé

The organization and biophysical properties of the cytosol implicitly govern molecular interactions within cells. However, little is known about mechanisms by which cells regulate cytosolic properties and intracellular diffusion rates. Here, we demonstrate that the intracellular environment of budding yeast undertakes a startling transition upon glucose starvation in which macromolecular mobility is dramatically restricted, reducing the movement of both chromatin in the nucleus and mRNPs in the cytoplasm. This confinement cannot be explained by an ATP decrease or the physiological drop in intracellular pH. Rather, our results suggest that the regulation of diffusional mobility is induced by a reduction in cell volume and subsequent increase in molecular crowding which severely alters the biophysical properties of the intracellular environment. A similar response can be observed in fission yeast and bacteria. This reveals a novel mechanism by which cells globally alter their properties to establish a unique homeostasis during starvation
Fichier principal
Vignette du fichier
elife-09376-v2.pdf (3.04 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01295659 , version 1 (04-10-2018)

Identifiants

Citer

Ryan P. Joyner, Jeffrey H. Tang, Jonne Helenius, Elisa Dultz, Christiane Brune, et al.. A glucose-starvation response regulates the diffusion of macromolecules. eLife, 2016, 5, pp.e09376. ⟨10.7554/eLife.09376⟩. ⟨hal-01295659⟩
598 Consultations
116 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More