On the Numerical Modeling of Fiber-reinforced Composites: Towards Industrial Applications
Patrice Laure, Luis Fernando Salazar Betancourt

To cite this version:

HAL Id: hal-01295240
https://hal.archives-ouvertes.fr/hal-01295240
Submitted on 30 Mar 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Process and Industrial Application

Fiber Reinforced Composites: SMC

- Motivation: Possible ways to reduce CO2 emission.
- Automotive: 10% weight reduction compared to all-aluminium design.
- Produce structural parts using fiber reinforced polymer composites: «Ultra Light» or «High Performance»
- SMC (Sheet Moulding Compound) process:
 - 4 Steps: Flat pattern insertion, Filling, Curing, Ejection.

Rheological Behaviour of SMC under Compression

- Homogenisation: fiber and matrix are seen as a single phase
- Model of planar isotropy: fiber orientation perpendicular to vector n
- Anisotropic compressible Stokes equations coupled with thermo-kinetic equations [Dumont et al., 2003],[Boyer et al., 2007]
- Viscous stress Tensor: $\sigma = \alpha_0 \eta_{eq} \left[D + \alpha_1 \left(M^{T} D \right) M + \frac{1}{2} \alpha_2 \left(M^{T} D + D^{T} M \right) \right]$
- $\alpha_0, \alpha_1, \alpha_2$ depend on fiber fraction, η_{eq} follows a power law, $M = n \otimes n$

Numerical Simulations

Finite Element Library fully parallelized

- Immersed methods and mesh adaptation.
- Interface tracking and mass conservation.
- Friction against wall, Penalty method for Boundary Conditions.