Student Sliced Inverse Regression

Alessandro Chiancone 1, 2, 3 Florence Forbes 2 Stéphane Girard 2
1 GIPSA-SIGMAPHY - SIGMAPHY
GIPSA-DIS - Département Images et Signal
2 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : Sliced Inverse Regression (SIR) has been extensively used to reduce the dimension of the predictor space before performing regression. SIR is originally a model free method but it has been shown to actually correspond to the maximum likelihood of an inverse regression model with Gaussian errors. This intrinsic Gaussianity of standard SIR may explain its high sensitivity to outliers as observed in a number of studies. To improve robustness, the inverse regression formulation of SIR is therefore extended to non-Gaussian errors with heavy-tailed distributions. Considering Student distributed errors it is shown that the inverse regression remains tractable via an Expectation-Maximization (EM) algorithm. The algorithm is outlined and tested in presence of outliers both on simulated and real data, showing improved results in comparison to a number of other existing approaches.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01294982
Contributeur : Stephane Girard <>
Soumis le : lundi 8 août 2016 - 10:17:24
Dernière modification le : lundi 9 avril 2018 - 12:22:35
Document(s) archivé(s) le : mercredi 9 novembre 2016 - 12:00:08

Fichiers

StudentSIR4HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01294982, version 2

Citation

Alessandro Chiancone, Florence Forbes, Stéphane Girard. Student Sliced Inverse Regression. 2016. 〈hal-01294982v2〉

Partager

Métriques

Consultations de la notice

170

Téléchargements de fichiers

65