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A Wave Problem in a Half-Space
with a Unilateral Constraint at the Boundary
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AND
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Centre de Mathématiques Appliquées, Ecole Polytechnique,
91128 Palaiseau Cedex, France

On considére I'équation des ondes dans un demi-espace 2 = {x € R¥/x, > 0}:

U, —Adu=10 dans Q=02X ]0, |, ()]
u(x, 0) == uy(x) dans £, 2)
w(x, 0) = u,(x) dans £, {3)

avec la condition unilatérale au bord
wx',0,0>0

P2
5;‘.(;«,0, N0  sur Z=209x [0, 0], 4)
u(x',0,1) - gg (x',0,1)=0

ou n est la normale extéricure & 2. On raméne ce probléme & un probiéme
unilatéral sur le bord, qui fait intervenir I'opérateur A4 défini par

Uy —Adu=0 dans Q,
Uy=u, =0 dans §2, (5)
u(x', 0, ) =v(x',t) surX,
et
(Av)(x', t) -—-z—::(x’, 0, ¢). (6)

L’opérateur 4 n’est ni local, ni pseudo-différentiel. Nous montrons cependant que sa
restriction a un intervalle de temps borné 10, 7| est positive en tant gu’opérateur
non borné de L*(]0, T{ x R¥~') dans lui-méme. Nous déduisons alors Pexistence et



Punicité pour le probléme (1)-(4), avec conservation de ’énergie. La positivité de 4
défini par (6), qui est une dérivée normale, dépend essentiellement de la géometrie
de 2.

We consider the wave equation in a half-space 2 = {x € R"/x, > 0}

U, —du=20 inQ=0x(0,x) )
u(x, 0) = uy(x) in 2, 2)
,(x, 0) = u,(x) in 2, 3)

with the unilateral condition at the boundary

u(x',0,) >0

2
-a-i‘;(x',o,:»o on Z= a2 x (0, w), @)

au
l’ 0& t)— I, 0, t)= 0
u(x's 0,0) - = (x',0,0)

where #n is the exterior normal to £2. We reduce problem (1)-(4) to a problem on
the boundary, which involves the operator 4 defined by
uy—Au=0 in @,

uozul::() in.Q, (5)
u(x’, 0, ) =v(x’, ) onZ,

and
’ 8“ B
(Al))(x ,t)———(.x ,O,I). (6)

This operator 4 is neither local nor pseudo-differential; we show that its restriction
to a bounded time interval (0, T) is positive, when it is considered as an unbounded
operator from L*((0, T) X R¥™") to itself. We deduce that problem (1}-(4)
possesses a unique solution, which conserves the energy. The positivity of the
normal derivative operator 4 defined by (6) depends essentially on the geometry of
£2.

1. INTRODUCTION

In this paper, we study the following problem: let £2 be a half-space of R,
defined by

2= |x=(x",xy) € RY/xy > 0}, (1.1)

where x' = (x,,.., Xy_;) is the usual notation, and let there be given
functions u, € H'(2) and u,€L*(2). We assume that ugl, ., is
nonnegative, and similarly —(duo/0xy)|,, -0 (Which is, a priori, an element of
H~YY(RN~1}) is nonnegative. Later in the article, we set x’ =x and x, = y.



We wish to find a solution of the initial and boundary problem

u,—~du=lu=f inQ,=02x(0,7), (1.2)
u(x, 0) = uy(x) in 02, (1.3)
u,(x,0)=u,(x) in 2, (1.4)

u(x’,0,6) >0,

o

Z (00,030, aeonZ={x/x,=0}X (0, 1)=2X (0, T), (L5)
N

u&ﬁ&ﬂﬁ?@t&ﬂ:&
N

Conditions (1.5) are usually termed unilateral constraints.

Equations (1.2)}-(1.5) can be generalized to the case of a slab with, for
example, a Dirichlet condition on the other side; thus x belongs to
R¥~! x (0, L) and we have the boundary condition

u(x’', L, 1)=0, VX't (1.5")

In case N=1, Egs. (1.2}-(1.5) and (1.5") allow one to describe the one-
dimensional motions of a slab of linearly elastic material, with zero
displacement at x, =L and with a unilateral constraint at x; =0, ie., the
dynamical situation associated to the Signorini problem [2,5,8]. Let us
formulate this problem without reference to the specific geometry of a slab: if
2 is the reference configuration, 2 < R®, if u= (u,,u,,u;) is the
displacement vector defined on {2, and if we choose to work at the approx-
imation of small displacements, the strain tensor ¢ is defined by

I (éu; ou
GiJ(u)*—z*(E;;+a—)cj). (1.6)
As forces are balanced,
o%u;
Uz’j.jzf;'—“‘__atz , (LN

where o,; is the stress tensor. The constitutive law of an elastic material is
Oy = yj(X) €4(11) (1.8)
and, in the case of an isotropic, homogeneous material,

Qg = A0y Oy + (844 8, + 6,1 60),



so that
Uij='16kk 5ij+2y£,.j. (1.9)

Define, for n the exterior unit normal to the boundary of £,
Uy=1U‘N
Upp = U; — Uy H; (1.10)
ur=(Uir)i-1,2.3

Oy =0,m1;

Gir =0y — Ox N, (L11)

07 =(0ir)i=1,2,3-

Then the Signorini unilateral conditions are given by

uy <0
oy <0

on Tk, (1.12)
Uy 6y="0

o,=0

where I's is a given part of the boundary, where the elastic body is not
allowed to move outside of its reference configuration. Conditions (1.12)
express moreover that whenever u, < 0, the normal strain is zero, because
there is no contact between the body and the obstacle (which has the shape
of the reference configuration along I'!); and finally, if u, =0, the reaction
of the obstacle is normal to the boundary, and directed inwards.

In the particular case of a slab of homogeneous, isotropic material, with
reference configuration 2 =R?X (0,L), and a unilateral condition on
I's=R?Xx {0}, the equations of motion depend only on x; and are the
following: from {1.6), (1.7) and (1.9),

&*u 8%u

L ____C!+ « a=1,2; 1-13
e H e T (1.13)
8%u, 8%u,
pre = (A + 2u) P + /- (1.14)

The unilateral conditions (1.12) can be translated as follows:
n=(0,0,—1)

oy

Oy =033 = (A + 2u) pw
3



%N = ""“3

ou ou
= s a0= “'_19“—'150)
07 =(—03,—0y,0) ( ox, ox,
so that
;20 |
Ou,
A+2u)——<0
ox;
{ 5 on . (1.15)
Us
. — =0
( Uy (A 4+ 2u) o,
du, ouy
ax,  ox,

If we choose the condition at x, =L to be u=0 for instance, then the
system (1.13)}~(1.15) uncouples as

&u, ’u,
= w3 s L s T s
GE WIS O D)X(0.)
du, Ou,
E) = MV = 0 = 0 * '1
Uy > _8x3 <0 U, -——ax3 on {x =0} (1.16)

u,=0 on {x=L},

which is exactly of the form (1.2)-(1.5), (1.5}, and two wave equations on
u,, u,, with Dirichlet boundary equations.

In the case N = 2, one can imagine the following experimental setup which
would allow a membrane to vibrate with boundary conditions corresponding
to (1.5): let the reference configuration of the membrane be a plane domain
02, and let 612 be its boundary. Let I',, be a part of 802 where the membrane
is tied to a glider, so as to move freely in the transverse direction, and
assume that on the remainder of 902, the membrane is fixed. This realizes
Neumann conditions on I',. If moreover, there is on the glider an obstacle
which constraints the membrane to stay on one side of that obstacle, and if
the contact between the edge of the membrane and the obstacle does not
dissipate energy, then the motion of the membrane would satisfy (1.2)-(1.4),
with the boundary condition (1.5) on I',, and a Dirichlet condition d2\T,,.

Nevertheless, the motivation for studying (1.2)~(1.5) does not lie in the
mathematical study of the above two situations, which are not very
interesting from the mechanical point of view. The real motivation for
studying (1.2)~(1.5) is the approach the problem of linear elastic vibrations
with unilateral constraints, that is, the general dynamical Signorini problem.



The system of elasticity is much more complicated than the wave equation,
but we expect to retain, in this simpler case, some of the features of the more
difficult problem of elasticity.

In this paper, we prove that problem (1.2)-(1.5) possesses a unique
solution which conserves energy, if we assume that u,, «, and f are smooth
enough, viz., uy € H*(2) N Hy(2), u, € H/*(Q) and f € H'*(Q,).

To obtain this result, we reduce problem (1.2)-(1.5) to a problem on the
boundary which involves the operator A defined by

Du - O in QT9
u(x,0)=u,(x,0)=0 a.e.on £, (1.17)
u(x',0,)=ov(x', t) onX,,
7
(Ao)(x', 1) = —gljv(x’, 0, £). (1.18)

In the case N = 1, we can express 4 as a differential operator: if u satisfies
(1.6), with 2 = (0, +0), then there exist distributions f and g such that

u(x,y=fx+ 6+ gx—1), Vx>0, V>0

If #(0, -) is in C*(|0, +00)), then we know that the solution u is of class
C®, and we have

Sx)+gx)=0  on (0, ),
S'(x)—g'(x)=0  on (0, ),

so that we can choose f and g such that
Slx)=g(x)=0  on(0, ).
Then, the boundary condition,
SO+ g =0v@), V>0,
implies
g(—=t)=0(2), Vt>0.

Therefore,

1%
(D)D) = — 20,0 = =)~ g'(~1) =5 (1) = 5 ()



We can see that in the case N =1, 4 is just differentiation with respect to
time.

If N> 2, this operator is not local; it is not pseudo-differential either, as
its symbol is not smooth on an unbounded subset of RY. We nevertheless
use, in Section 3, pseudo-differential techniques to prove that 4 is positive,
when it is considered as an unbounded operator in L*((0, T) x R¥™'), and
we give a number of functional results concerning 4.

The reduction of problem (1.1)}-(1.5) to a problem on the boundary is
performed as follows: if w is the solution of

DW =f in QT9
w(x, 0) = wy(x) a.e. onf2,
° (1.19)
wx, 0) = w,(x) a.e. on £,
w(x’,0,0)=0 onX,,
we let
ow
9t = ’9 09
o0 =5 (,0.)
and we show that (1.1)}-(1.5) is equivalent to
Avzo
v>20 (1.20)
(Av — @ =0

and

U=w-v on the boundary.

Once again, the case N =1 is extremely easy, and one proves immediately
that the problem

dv

a‘;/ﬁf’

v>0
dv (1.21)
(G —e)o=0



where ¢ € L'(0, o), possesses a unique solution which is given explicitly as
follows: let

(1) = f:(p(s) ds

and denote
r~ =max(—r, 0), for reR.
Then
v(t) = max{P (s)/0 < s < ¢} + P(2). (1.22)
Clearly

v(t) > D () + D(1) > 0.
Let % be the open set defined by
z(r)=max{® (s)/0 < s <1}
7 ={te[0,0)/z() > P ()}

Then, on 7, z is locally constant, and therefore
dz
—({)=0 e.on?.
o ) a.e. on

On #Z°, the complement of #, z{(f)=® (f); as z is by definition
nondecreasing, its derivative, given by

dz_do~() |—p if ®()<0,

dt  dt 10 if @) >0,

is nonnegative almost everywhere on Z ¢,
Therefore, we obtain

Do o 27U N (@00,
f{%zo on #°N {®() < 0},

where we know that ¢ <0 on Z°M {@(r) < 0}.

This proves that v given by (1.21) satisfies (1.22). The uniqueness of
v € Wi(0, ) is left to the reader.



An alternative way of solving the one-dimensional case is to observe that
if we symmetrize u, solution of (1.1)}-(1.5) as follows

u(x, ) = u(—x, t), ¥Yx <0,
then & has the following properties
Oid =3, @ v(t) + /.

where the measure v is given by
© Ju

Gowy==2{ = 0.0 u(@)d=24[x(0, )] v
0 OX

so that, according to (1.21),
Oa>f
a(-ty20
supp(Cd — f) < {0} X {t/u(0, 1) = 0},

which is precisely the formulation of the problem of the string with a poin-
tlike obstacle [7], for which an existence and uniqueness theory has been
given in the referenced article.

In Section 4, using techniques from variational inequalities, we show that
(1.20), for arbitrary N, possesses a unique solution as soon as ¢ belongs to
the space L'((0,T); HV*RN-"" N W' ((0,T); H X R¥ ). If ¢ is
somewhat smoother, we get the conservation of energy.

Finally, we show that the positivity of A depends on the geometry of the
domain, when A4 is defined by (1.6}, and (1.7) is replaced by

du
A ' — ’
v{x’, 1) p» (x', 1),

with v the exterior normal to £2.

There seems to be a great difference between unilateral constraints on an
open subset of £ and on a submanifold of lower dimension of 2.

A clue to the difference between constraints on a lower-dimensional
submanifold of £ and constraints on an open subset of £ can be found in
the comparison of [6] and [7]. In [6] and [7], a vibrating string was
constrained to stay above an obstacle; in {6], the obstacle was continuous,
and in [7] it was pointlike; one had to impose the conservation of energy in
[6] to obtain the uniqueness and, on the contrary, the conservation of energy
was a consequence of the equations of motion in [7].



It is possible that this difficulty is not very far from the one which is met
in variational inequalities for elliptic operators in a smooth bounded domain
£2. Indeed let

K= {u€ H\2)/u >0}
and
L={u€ H' (Q)/u|,o>0};

both problems, for f given in L*(£2),

min (JiVude—qudx) (1.8)
min U;w;zdx—jﬁs dx) (1.9)

admit a unique solution, but it is considerably easier to characterize the
solution of (1.9) than that of (1.8).

See Lions [4, Chapter 2.8, Examples 8.1 and 8.2] for more details
concerning (1.8) and (1.9).

2. REDUCTION TO A PROBLEM ON THE BOUNDARY

Let N> 1 be an integer, and let T be positive and bounded; we denote

n=N—1

.Q:P”xﬂ?:

QT:QX(O’ T}9 Q:ch)7
I'=200

L,=IX(0,T) Z=2X;
the generic point of £ is denoted by

X=(x, ») xER", yeR,
and the problem we are interested in is

u,—du=f in @, (2.1)
u(X, 0) = u,{X) in £, 2.2)
u,(X,0)=u,(X) in 02, (2.3)



——>0 onZ,. (2.4)
oy
ou
Z=0

u 2

We define a boundary operator A as follows: let ¢ belong to
Z(R" X (0, T)), and let u be the solution of

Ou=0 in @y,
u(X,0)=u,(X,0)=0 in 02, (2.5)
u(x,0,)=o(x, t) onZX;.

Then, it is clear that u is of class C*® on @, and therefore, (du/dy)(x, 0, t) is
of class C*.
More precisely, if ¢ is supported in B(0, R) X [y, T'] with

B(0,R)={x€ R"/|x| <R},
then u is supported in
{3, /(%] + p) P KR+t —tg and 12 4o},
and, in particular, (Qu/dy)(x, O, t) is supported in
{(, 1)/|x| KR+ t—tyand £ > ty}.

Let us denote

(Ap)(x, t) = — Z—; (x,0,0). (2.6)

We shall now extend 4 to spaces of distributions; unfortunately, we cannot
extend A simply by duality, because (4¢, y) equals neither (¢, Ay) nor
—{p, Aw), for ¢ and y with compact support. On the other hand, we are,
indeed, interested mainly by phenomena occurring for finite times, so that it
is convenient to set

A, =4 restricted to [0, T7].
Let ‘4, be defined by
v,—dv=0 inQr,
VX, T)=v/(X,T)=0 in 2, .7
v(x, 0, ) =w(x, 1) onZX,,

505/53/3-3



and
ov
(Arw)(x, ) =— 5; (% 0, Olio.1y-

Then, if v is supporfed in B(O,R) X [0, ¢,], ‘A, v is supported in
{(x, 8)/|]x| <R+, —tand £ L 4y}
We can now check that
Aro, ¥) = o, ‘Arv), (2.8)
for p in Z(R" X (0, T]) and v in Z(R" X [0, T)). We have indeed
Arp, v) — (9, "4ry)

T ou ov
=[] (-2 00,0000, + 5 (0.0 u(x, 0,0)) sy
- jT j (du(x, y, t) v(x, y, £) — dv(x, y, 1) u(x, y, 1)) dx dy

[L IR 0

i T
=j (j (u,,v—v“u)dt) dxdy =0,
Q 0

thanks to the initial condition for u and to the final condition for v.
Now, if S belongs to Z'(R" X [0, T)), let us define 4,5 by

(4,8,0)=(S,"479), VeEZ(R"X (0, 7)) (29)

This relation makes sense because if ¢ belongs to Z(R" x [0, T)), then so
does ‘4 ,¢.

One must remark that, except in the case N = 1, where the geometry is not
rich enough, if ¢ is supported in a small ball

{06 /1% = X0 + [t — £ < PP,
then 4, ¢ does not vanish in the set
{6 0/3x,, 6,0t —t, =|x — x| and |x; — Xo|* + ¢, — 1> <7,

if @ is suitably chosen. Therefore, geometrically, if S is very singular in a
neighborhood of t =0, x =0, 4§ cannot be small close to the cone ¢ = Ixl,
and we can be in trouble defining (4,5, ¢) is ¢ is not supported inside
{{(x, t)/t > | x|}. One could see this from an analytical point of view by stating



that, intuitively, if one develops the symbol of A (see below), it contains
powers of 7', and therefore involves some integration with respect to ¢.

Nevertheless, we shall define A4S for S in Z'(R" X [0, 00)): let the test
function ¢ be supported in R" X {0, T'}. We set, for S, the restriction of S to
(0, 71,

(A8, 9)=(A4:S57,0) (2.10)

A is well defined: if we have two numbers 7 and T, T < T, for instance, such
that ¢ vanishes outside of R” X [0, T}, then ‘4;¢ vanishes identically on
R" X [T, T], by the support property of ‘4; therefore,

ArSrs0)— (A7 87,0)=(Sr, '470) — (87, '4;0)

and according to the above remark, this last expression vanishes.
Let

H=L*R"x (0, T)). (2.11)
We define an unbounded operator 4% from H to H by

D(43) = {0 € H/Ap € H)

(2.12)
AYo=A4;0, VY€ DAY}.
In the same fashion, we define an unbounded operator A} by
5 o
Dd;)= }qa € L0, T;Hl/s(lp\n))/a_(ﬁe L0, T; H'(R™)
and 4,9 € L*(0, T;H““(P"ﬁf
(2.13)

Alo=Arp, VoEDAy).

We can now relate problem (2.2)-(2.5) to a problem on the boundary
involving the operator 4.

THEOREM 0. Let u, belong to Hy(2), u, to L*(Q2) and f to L*(Q,). Let
w be the solution of

Ow=f inQy,
WX, 0) = u,(X) on 2,
wlX, 0) = u,(X) on £2,

w(x,0,1)=0 onXk,.

(2.14)



Define

o(x, t)= z_;v (x,0,¢). (2.15)

WlThez(z) uis tzz( ;)o)l)uz}on Z{ (21.2)}(2.4), which belongs to L*(0, T; H'(2))N
20, T L if and only i

u=w+z (2.16)
Oz=0 inQr,
z2(X,0)=2,(X,0)=0 on £, (2.17)
z(x,0, ) =v(x, 1) onX,,

and v belongs to the domain of A} and satisfies
v>0
Arv>0 (2.18)
(Arv—9,0)=0.

Proof. Under the functional assumptions made on u,, #, and f, we know
that w is unique and satisfies

2
f (‘aa—y:()(, t)‘ +|Aw(X, t)|2) dx<c<+oo, VtE€[0,T]

Therefore,

@ EL®0,T; H V(R") < L*(0, T; H *(R"))

and let, for u in L®(0, T; H'(Q2))N W"(0, T; L*(2)),
Z=U—Ww.
Then, clearly, z satisfies (2.17), so that, in particular,
v=z[y € L*, T; H*(R"))

g—; . and % xTELZ(O, T; H '*(R™)).

Therefore A v is well defined; if u is a solution of (2.2)—(2.5), then

v=u—w|; >0

ou ow
A‘Tvz—a—y—(x,O,t)-k—g)—}—(x,O,t)}(p



and

(Arv—p,v)=0.

Conversely, if v satisfies (2.18), clearly u=w+2z is a solution of

(2.2)-2.5). 1

Notice that is we define a multivalued monotone operator £ on R by
%] if r<g,
B(ry=R if r=0,
101 if r>0

(see [1] for some information on multivalued monotone operators), problem
(2.18) is equivalent to

vE DA}

(2.19)
Ao+ B(v) Do

3. THE PROPERTIES OF A, 4,, A} AND 4}

3.1. Representation of A in Fourier Variables

In what follows, we denote by .# the Fourier transform in x and ¢, with
dual variables £ and 7; we shall write

4& 1) = (Fu)G », 7)
P& )= (F )& 1)
If we perform a Fourier transform on (2.5), we shall have
(& 1) =6(& 1)

and we wish to obtain an expression of # which will give back the unique
solution of (2.5) after an inverse Fourier transform# .
In the region |&|> > 7%, the solution of (3.1) must be

(& . 7) = §(& t) exp(—y VI&[* — ) (3.2)

so as to avoid infinite energies.



In the regions |¢]* < 12, the solution of (3.1) is of the form
#(& », 1) = $(& 1) cos (¥ /7° — [&]") + (& ) sin (v /72 — &)%),

where w is some function of o.

We make use of the Paley—Wiener theorem to determine y; we know that
if ¢ = 0 for ¢+ 0, then we can extend ¢(¢, -) as an analytic function of r + ia,
for a < 0. On the other hand, u(x, y, t) must be identically zero for 1 £ 0, by
the propagation property of A; therefore, #(¢, y, -) must be extended as an
analytic function of 7 + ig, for @ < 0. But, this analytic extension is deter-
mined by expression (3.2), which gives

4, y, 7+ ia) = §(& 7 + ia) exp(—y /1€ — (z +ia)’),
where the determination of \/[&[7 — (r + ia)” is chosen by continuity at

a=0" (Fig. 1).
Thus, we shall define the expression

i rz—léfz it >{¢,
VIR = =g -1 if —[&<T<|él, (3.3)
—-i\/rz~|é|2 if t>—]¢,

and we shall have, for the unique solution u of (3.1),

4 », 1) = §(& 7) exp(—y V| &I — 17), (34)
im7
C
-1El -~ Re 7
VIER-(reim? (ma)2

Fic. 1. The representation of the determination of \/[&{” — t* for the symbol of 4.



and thus

foeo=-2E2D| _seoViEF-e. 69)

We remark that the symbol of 4

a(, 1)= V¢ -1 (3.6)

does not belong to a reasonable class of pseudo-differential operators,
because it is not smooth on an unbounded set, viz., the cone 7= 1 |&|.
Clearly, 4 sends continuously H*(R" X R) to H*"'(R" X R), where s is an
arbitrary real number, and H* the corresponding Sobolev space.

3.2. First Functional Properties of A%

The first result wanted here is the following:

THEOREM 1. Let A% be defined by (2.12); then A} is injective and D(4})
is included in C°([0, T); L*(R™) M {u/u(x,0)=0 a.e.}.

The proof will be done in several steps; the first one will be to define an
operator B,, which will formally be an inverse of A%, and which will be

continuous from H to C°([0, T]; L*(R™)).
Let v belong to H and set

Up=0" licr

In what follows, we shall always identify H with the functions of
L*(R" x R) which vanish outside R" X {0, T.
Define, for a <0,

B, v)(x, ) =F (5R(§, T+ ia) ! ) , (3.7

VI — (r +ia)?

where the determination of \/[€]* — (r + ia) is obtained by continuity, as in
Fig. 1. We can see that |[£|> — (z + ia)?| is bounded away from zero, for all
1€ R. As v, =0 for £ 0, it is clear that §,(&, -) can be extended to be an
analytic function of 7 + ia, a < 0. Moreover, v4(& t + ia) is continuous in ¢,
and

Op(& 7 + i) = {F (vp(x, 1) €*)} (&, 7) (3.8)

which shows that ¢, is square integrable. Therefore 7 0.(& 1+

ia)/\/|&]F — (t + ia)” is square integrable and (3.7) makes sense.

We show now



LEMMA 2. The operator B, does not depend on a < 0.
Proof. As 04(., - + ia) is square integrable, thanks to (3.8), the function
U ﬁk(és c+ ia)

is square integrable for almost every £ But, on the other hand, for every
multi-index p = (P, Po)s

|DESE s — ia)? dEds) <R |vgla
( )

which can be written
Ox(-, - —ia) € H™(R}, L*(R)), YmeN.

Therefore, dg(-, - —ia) can be identified with a C™ function from R} to
L*(R) and we even have, for every nonpositive a,

for all p=(p;».p, and all g, the functions -
D} D?3y(¢, - —ia) are continuous and bounded from R” to
L*(R). (3.9)

Define now a function 4, by

_ L ueria 1 7 1
ho(& )= Jpe e Op(& t +ia)dr.  (3.10)

According to the previous considerations and the fact that

e+ ia) itr ,—at

e =e'Te™%,
and
1 c
1 < for large |1},
VIEE = (r + ia)? 7]

we deduce that 4, is well defined.
Moreover, we have the estimate

172
[ha($ D) < —2-17? UP [Bp(& T + ia)? dr) e

X g@ ||¢|2—f:+ )] >/




Let now a and b be two negative numbers. Consider the contour integral

[ v)az

yr
with

1

Vg e

w(z)=e"*

and y, depicted in Fig. 2.
Clearly, v is holomorphic in Im z < 0; we have

[ v v | <o et il

Hbl —p

€ A ,
<7 [ 18u& i) b

The second derivative in 7 of 6, (0%0,/6t°)(¢&, - + ia), satisfies, thanks to

3.9),
J

Thus, 04({ r+ia) tends to zero when |r| tends to infinity. Moreover,
0x{& 7+ ia) is uniformly bounded in & in 7 and in a > 0. The Lebesgue
convergence theorem implies that

%5,

2
—@—;7" dT<C< (o \7/6

(& 1+ ia)

-5
lim |0 (& r+ip)dp=0,

Iri—o0

imz

Re z

Fig. 2. The integration contour 7,.



and therefore, thanks to Cauchy’s theorem,
j w(r + ia) dr = j w(z + ib) dr.
R R
We shall now denote A(¢, £) instead of (¢, t); B, v, is the inverse, partial in

¢, Fourier transform of A{{, 1); we can see now that B, does not depend on a;
from this moment, B, will be denoted B. 1

We shall now estimate £ in terms of ¢ and &
ProprosiTiON 3. Let
1/2
0= (10 o ar) . (3.11)

Then, there exist constants C, and C, such that, for all a < 0,

[h(t, &) <e™*'Cy(a* +1¢1) (1 — C, Log(—a/\/a® + [&]*))*0(¢).  (3.12)
Proof. Denote for a <0,

0.0 = ([ 16,6 7+ i) d

1/2

We deduce from (3.9) that 6, is finite for every nonpositive a. Moreover, we
have

ea(é) < 90(5) = 8(6)7 v é (3 1 3)

Denote by .#, the partial Fourier transform with respect to x, and by .#, the
partial Fourier transform with respect to ¢. Then

16,07 = [ 18(& 7 + ia) ar
= [ 1566 - + i) d
= [ 177 waCs ) e dt
= [1151@aC DI et

SN GR

= *9(5)129
which proves (3.13).



We apply the Cauchy-Schwartz inequality to the integral which defines #,
(3.10):

_ d 172
H O <18 + il ([ i
so that
. dr e
|h(2, O < 6(8) (J" TR ) e (3.14)

Thus, we have to evaluate

I= (fw (P —a* =&} +4a’t) 17 dl') !

Al &

We perform the change of variable r = \/a’ +|]* 5, and we obtain

1P = (a* + &)1 }J‘w [(sz—-1)2+4(02+]f‘2)"lsza2]"”2ds€,

and by symmetry,

=4 + (¢~ }Jl [(s* = 1) + 4a’s%(a* +1&[) ']~ ds( .(3.15)

Let
P (3.16)
Va + ¢
and
s=1—Ay.
Then,

[ 167 = 0+ datsi@ + 1)) as

~1/A

:J ,1{4;{2(1 __;{y)z +22y2(2—ly)2}“’f2 a’y
1]

=J.



This integral is cut into two pieces, one from 0 to C, and the other one from
C to 1/A, where C is, at the present moment, arbitrarily chosen between 0
and 1/A. Thus

C dy 1/A dy
IJL| ==——=+ —_—
Jo 2(1-4y) jc (2 —4y)
C dy l//ldy
< —= hcd
<zt >
so that,
1
Jé—ﬁLog(l—iC)—Logl—LogC.
Choose now
Cc— 2
14217
then
1 1
<—— _ 2 14210)— .
J < 2/1L0g1+2/1 Log 2 + Log(1 +24) — Log 4

In a neighborhood of A = 0, the term (1/(24)) Log(1/(1 + 24)) is bounded;
(3.16) shows that A is always between O and 1, so that we can find constants
C, and C, such that

J < Ci(1—C,Log 4). (3.17)
If we make use of (3.17) and (3.16), we obtain
I<2(a + &) C (1 = C, Log(—a/\/a* +]¢1}))! e,
which yields (3.12), with the help of (3.14), after renaming constant C,. ]

The estimate (3.12) enables us to define Bv for an arbitrary v in H; we
have the estimate

[ 1Bugon 0 dx = [ | 7R, D dxe = [ [ OF d&;

and if we weaken (3.12) to

|h(5, O < e™“C,0(%),



we obtain

f |Bug(x, )2 dx < e~ 2C? j 185(& 7)) dt dé,

which proves that, for arbitrary R, and 77,

T

jj | Bog(x, 1) dx dt < C(T") |03

Therefore, we may pass to the limit as R goes infinity.
We may remark Bv € L] .(R; H/*~¥R™")) for every positive &. Let us
now prove that Bv is continuous from R to L*(R").

LeEMMA 4. There exists a continuous, nonnegative function g(s, t) which
vanishes for s = t, such that

[h(t, &) — h(s, &) < g(s. 1) 6(S). (3.18)

Proof. We resume working with v, ; we have for negative a

(e, &) — h(s, &) = { = jl \/_2 = (¢ 2) dz
{eu’z e!sz

2 1/2
— .
imica |11 —27] ZJ

We shall compute the above integral in the spirit of the proof of
Proposition 3. Let

9(6)“

_ . }ettz 354 2

1= e TR T
Then

_ ‘eitz__eisztz ]+‘Z'

I_me L+lzf o [[EfF =27 “

leitz_eisz!zt 1/2 (1+IZD2 1/2

<('{Imzza (1+lzDz dz) ( Hél - izdz) )

Set

’eisz _ eitzrt v /2

g(s,t,a) = (Lm:amdz) . (3.19)



The theorem of Lebesgue tells us that g is continuous with respect to s and ¢
and vanishes for s = £. Thus, we have to evaluate

f (1 +|z)? (1 +]a+t‘ai)2 & (3.20)

mz= a”§|2—222d Jw(a —a’ —[¢*)? + 4a’a?

and to show that (3.20) is bounded inedependently of |£|.
We estimate (1 + |0 + ia|)* by C(1 + 6?); we notice that
+oo do Viat+itihiz do
jo (0 —a* — &) + 4a’c? <L ((@® +1¢17)/2)?
TS S
Jadtiamn 4ato
SC@ +1&M) ™ + @ + 157"

which gives a uniform bound in ¢ Therefore, it remains to estimate
uniformly in {&]

¢’ © o’
J= J w (0 —al _[EP) + d4a’a” do = 2[{) @ —a>—|2]) + 4a’a’
(3.21)

We cut J mto two pieces, one from 0 to 2/« £|%, and the other one

from 2 \/a® +|&]* to +oo. If

o>2va*+ ¢

then
o —(a* + &%) > 30%/4,
and thus
+o0 o do o0 o’ do
Luﬂﬂn%”? (6 +a* —[&]")" + 4a’a’ < 2ars iz (96°/16)
8

= S@ e (3.22)

Let us estimate the other part of J,

2aZ+1H1H12 ¢t do
J (@ —a’ =&} +4a’0”’




which becomes, after performing the change of variables o* = s(a® +|¢|%),

1 ., 2y~172 vz ﬁds
2 (@ +1¢1%) L G- 1Y +das@+ & " (3.23)
Set
o 2a2 .
Tat 4+
then
_ ' \/Eds 4 V2 ds
K_jo (s—1? +da’s(@® + ¢! <2 L (s—1)Y +2is~

If we take a new variable s — | = 5/, we estimate now

2-1 ds’
L ST 2+ 1)

But this last expression can be explicitly integrated, because

[‘\/E“’ ds’
J_oi 84240 4+ 1)

V-1 ds'/\/2% — 1’ ;
= V2A =2
L

QA=) + A1) /2A =A%) + 1]
R S URYS Lo &7 SR Lt
= \/2,1——17 {arctg \/Zl—/lz arc tg

Cl

<—=.
i

Finally,
A2V at+ g’ ot do

o (0.2__02_!(:12)2_1__40262

CVaHE 1 s C
=M= TIH - ==,
S 5 Va +1¢] -
which gives an estimate on J independently of |&|. Therefore, (3.20) is
bounded independently of |&|, which proves Lemma 4. §

End of the proof of Theorem 1. We deduce from Lemmas 3 and 4 that B
is linear, continuous from H to C°(R; L*(R")NLZ (R; H?~R")), for

Loc



all positive &. Moreover, if v belongs to HM >, the very definition of B
(see (3.7)) shows that Bv is supported in R" X R™*, thanks to the Paley—
Wiener theorem. In particular, for such a v,

Bu(-, t)=0 for t<0.

As HM.%,,, is dense in H, we can see that for every v in H,
By(-,1)=0, Vi<0,YvEH. (3.24)
Define
Brv = (Bv) 15 () (3.25)

Then B, is linear continuous from H to C°([0, T]; L*(R") M {u/u(-, 0)=0}.
From its definition, B is injective, and so is B,. On the other hand, if we
set for a negative and v in %,

A, (v)=F (B(& T+ ia) V| &P — (v + ia)?),

we can show, in the fashion of Lemma 2, that 4, does not depend on 4, and
that, in fact, 4 = 4, thanks to (3.5). Therefore,

ABv =v, YovE s
By density
ABv = v, VYveH. (3.26)
Let us show now that
(ABv) 1y =0, Yve H. (3.27)

We have only to see that B,v— Bv is supported in R" X [0, 00), and
therefore A(B,v — Bv) is supported in R" X [0, o0) too. From (3.27), B, is
injective. If u belongs to D(4Y) defined by (2.12), we know that

Aju=Auly 13
therefore, (3.27) can be rewritten as
ASBv=nv, Yo € H. (3.28)

Conversely, if u &€ D(4%), then Aju € H, and B,A%u is well defined. It
follows that

B, A%u=B(Au) g 1y



and knowing that B(4u} = u, we can see that
B AYu=u, Yu€ DAY). (3.29)

Relations (3.28) and (3.29) show that B, can be identified with the inverse
of A%, and this proves Theorem 1. §

COROLLARY 5. A% is closed in H.

Proof. This is immediate because {42)~' is bounded and therefore
closed. 1§

3.3. Positivity Properties of Ay

The main result is

THEOREM 6. Operators A% and (A%)* are positive; moreover, for u in
D(AY), the integral

J"; e OVIEF = dedr (3.30)
| Ll

is defined, and

(Ayu,u)=2m) " |

. iz, & V&) — 2 dédr

KIS
+1 j lu(x, T)? dx. (3.31)

Proof. Assume first that u belongs to >’ (R" X (0, av)). Let us show then
that u, =u - 1}, ) belongs to the domain of 4,. The function 4u belongs
indeed to .%, and, in particular, v = 4u - 1, ,, belongs to H. Then

Brv=B(Au - 1y 1) Lig. 7y
and by the support property of B and 4,
Bro=u- 1y 1y,
which proves our contention, and that

Aju=Au- 1y .
Set
D= j u(x, t) e~ dx

5(E, 1) = J v(x, 1) e~ d.

505/53/3-4



Then

(A%u, u) = j: dt jw [A2u(x, )] u(x, £) dx

T —
=Re j dt j BE, 1) G, 1) dEQr) ™"
0 Rr
Thus, we have to evaluate
|, 56 0 0 dgm) . (3.32)
We notice that

(¢ 1) = 31; f ™ i(r, &) dr (3.33)

i .
06 0= j e /& — 7 4z, &) dr. (3.34)

For ¢ and T fixed, we define a pseudo-differential operator .+ by

(A w)(t) = 717;.[»;’ e™ /&P — * w(r)dr, wE.¥,

where /|| —t° is the determination defined in (3.3). Let 4, be defined by
D(4y) = {wE€ L*(0, T)/(+#W) - 11,1y € L*(0, T)}
Agw = (Fw) - Ly 1y

We can decompose .+ as

Ay=—+F,, 3.35
=t (3.35)

where the symbol of 7 is

g =Vl -7 —ir.
For 7> |¢&,

o(& 1) =i/ =& — ),
for 7 < —|&],

(&) =i(/T — &P + 1),

so that ¢ is bounded.



Define an operator C; by
D(Cp) = {w€E L*(0, T)/(&;w) - 110,/ € L*(0, T}
Ciw=(Fw)- g pp-

Clearly, D(C,)=L*(0, T) and C, is bounded.
Arguing as in the proof of Theorem 1, we set, for a < 0,

BnO=5] T W) b

which is independent from a (same proof as Lemma 2}, and moreover, we
have the estimate

[ 2w la10,000 < €1 W20, 0005 (3.36)

which comes from the fact that the symbol 5(¢, t) = (VIE]7 — 7)™ satisfies
the estimate

16(5 o) " > max(a, || - <)),

so that

-1

£a for |7|<|€]+a,
(e =Eh~" for fr]>]

16, 7)

1
3.37
|6(Z 7)) 30

From (3.37), we can see that (3.36) holds. In particular, B,w is continuous
because H'(0, o0) is a set of continuous functions. Arguing still as in the
proof of Theorem 1, we observe that B, = 1}, , - %, is the inverse of 4,, and
therefore

D(dy) < {u € C°([0, T])/u(0) = 0};

thanks to the decomposition

d
AZ="—1-[-+ C{,
we can see that
D(4,) = {u € H'([0, T})/u(0) = 0}. (3.38)

Therefore, if w is infinitely differentiable and vanishes for ¢ 0, then w, =
w - 1io ; belongs to D(4,).



Let

w if 1T,
w,={w(I)T+e—1t)e”" if T<t<T+e,
0 if t>2T+e,

and let us estimate Re (4w, w,):
T
Re (A, w,, w,) = Ref Aw W, dt
0
T+e
= Ref AW, dt — Rej AW, dt.
R T
We observe that
1
[ tw) wedt=——| V1T =7 o)} dr,
R 2n R
and, in particular,

1
Re [ (#w)wdi=——] V& =7 o) dr.
R 27 J 510

Let us prove that, when ¢ tends to zero,

[ VRE=E @ deo] = 0 de

This is of course equivalent to

lim VIEIR =12 [ W(r) — w(2)* dr = 0.

€20 Jig> 1

But

Wy — W) (1) = —e'T"(e %" — 1 + eir)(er?) ™ 'w(T).

(3.39)

(3.40)

We can see that W, — w, converges uniformly to zero on [—|¢], |&|], which

proves (3.40), and therefore (3.41).
On the other hand,

J,T-H: (), di :J,T+.sdws
T

_ T+e _
. @ wedt-i-JT (Fw,) w,dt.

(3.41)



We notice that #;w, is bounded in L*(R) and that w,1; 7, 4 converges to
zero in L*(R); therefore, {7+%(&,w,) W, d! converges to zero, as & tends to
Zero.

The term 7+¢(dw /dt) w,dt equals —i|w(T)|*. Finally,

Remw)=——| () VBT =7 de+ o (WD (3:42)
% UmP 2

From (3.42), we can see that

|, 5@ naen™

= —z-l—f lup(& 2 V]EP — 12 dr dé+f (u(& T)? de,
T i

and, at last,

(ASur, u;)=(2m) """ f,

. |d,(& ) V1] — o dr dé
{

+ | lux, TP, (3.43)

where u; =u - 1, 1 and u € ¥ (R" X (0, 00)).
Let us show now that (3.43) holds for arbitrary elements u of D(4%).
Given u in D(4Y), let

v=A%u,
and let v*° be a sequence of elements of (R" X (0, T)) such that
vi-u in H. (3.44)

Let « be positive and

uf = Bv*

vi, = F (0/(1 + a|E)'?)

v, =F (B/(1 +a|E)?)

ul = Bv?

u,=Bv,.

Then, we observe that v’ belongs to .¥(R" X (0, T)) and that »® and u}
belong to C°(R; L*(R™)), with u® - 1,4 7 and uf, - 1,y r being elements of H.



We know that
0%, 7)

U = (232)—n+1 jhm:a jﬁ \/W

ei(h+x-§) dtf dr

— —n+1 ix+§ itr ﬁs(é’ T) itt ﬁs(é’ T)
= (27) jw e (Lmr:a e s e s dt) dc,

and that, in the same fashion,

. e eix-{ ‘s(‘;:, T) it
=00 ey (o T a) ds

so that
45 = a%(1 + a|&) 17, (3.45)
and denoting (1) = [ e ¥ dt, we obtain
Flug - Lio,r) = ¥r(r) x4
=P(r) * [0 + a|E) 7]
=[x &} (1 +a|C)h~"
=F W 1)1 +alé)~
Thus, we deduce that u°- 1;, 1y and u, - 1, 7, belong to the domain of 47.
Moreover,
J [€11(ug, - Lio,ry = e * Lio.rp) |* d dr
= (1€ +al&) 10" Loy —u - Lpo.n) P dde

< C(a) j [4° — 4 dé dr, (3.46)

and according to the continuity of B, this last expression converges to zero
as ¢ tends to zero. Function u} . 1y, , = u, r satisfies relation (3.43), which
can be rewritten as

(A 7w ) = [ b, ) dx

= (2n)~"-! j . a5, A& D2 VIEP — 77 dr de. (3.47)

LIRS



Thanks to (3.44), (3.45) and (3.46), we can pass to the limit in (3.47) as ¢
tends to zero, and we obtain

(A3t 7 0, r) = [ |ua0x T dx

= (Qm)~"! L - \2, (& D2 V]EF = drde. (3.48)

As a decreases to zero, the left-hand side of (3.48) converges to
(A%, 1) = [ Julx, T dx;

to prove that the right-hand side of (3.48) converges to the right expression,
one has only to notice that, for fixed ¢ and 7, the sequence

g, r(& T =4 P + @ €D

increases; therefore, the integral expression

Jl |<|§|,ﬁa(é’ T),z lélzwrz dtdé

converges to

ji !<i§!!ﬁ(§, T)'z !612”12 drdé

which proves (3.31). §

To complete the proof of Theorem 6, we have only to show that 4% has
indeed an adjoint, and that D(4%) M D({43)*) contains a dense subset of H.
But, we can define (4%)* by studying for a > 0

B;“vk — er’(:u»x‘{)ﬁx(x, é)p(lézz _ 1,2)~1 dtf d‘(,

Imr=g

where p(|&|* —1%) is the determination of /[ — 1’ taken from above,
according to Fig. 3.

Then, one shows in exactly the same fashion as in the proof of Theorem 1
that B* does not depend on a > 0, and that B* sends continuously H to
C°(R; R™). Moreover, 1;, ,,B* is the adjoint of B, so that the inverse of
lio,7yB* is the adjoint (4,)*. This yields the positivity of (49)*, but we
have in fact an equality similar to (3.31):



Imr
¢
VIR -(rvia)? ia
/\ /\ .
N=x Vi & VTR

Fi1c. 3. The representation of the determination of \/|¢]* — 1 for the symbol of the
adjoint of 4.

(A9 *w )= [uCx, O) dx + (2m) ™"~

X j‘m | lu(€, ) /|8 — o dé dr. (3.49)

This ends to poof of Theorem 6.
We have the following result on 4, :

PROPOSITION 7. A, sends continuously
0
V=1ueL*0,T; H‘“(P"))/—a% € L*0, T; H'*(R™)) and u(-,0)=0

to
L*0, T; H-'*(R")).

Proof. We have only to prove that for u;=u-1ly, 4y and u in
F(R™ X (0, ov)) we have the estimate

|4 rurlia0, rim-12mm < € ltrly (3.50)

for a certain finite constant c.
We define a function w as follows:

wix, 1) =ulx, t) if 0<tT,xeR”,
wix, t) = u(x, 2T — 1) if T, x € R”"



Of course, w is at most Lipschitz continuous with respect to time, but we
shall see now that Aw belongs to L>((0, 00); H™"*(R")); we have

w,x, £) = (2m) " j eI (& 1) dE dr

V- wix, )= Q2n)~" J BT B (E 1) dE d,
so that

Qn)~Y H |TW(, )2 dEdr =2 f: jwzu,(x, 0| dx dt (3.51)

(2m)~" j j |E(E, 7)|? dE dr =2 j: j _Ivut, 1) dx dt. (3.52)

Therefore, as
WIEP =2 wEnl<lémE ) if &>,
WIS = wE o<Wl i ¢ <),

we can see from (3.51) and (3.52) that 4w belongs to L*((0, o0); L*(R"))
and in particular to L*((0, ); H™V*(R")). Consequently, Aw - 14 €
L*((0, T); H'*(R™)), and

Aw - 1o n=Au - 1y ry=Arus. (3.53)

We have

2
IAW|L2((0,m):Hvl/2(P"))

2
= !AW!LZ(P;H‘UHP"))

= @m) " 14RE DI (1 + 18 dedr

= @)~ (VI =71 9@ P (L +18) " e a.
But we notice that

IVIEPR — | < max( €, |7]),

so that

WIEE =L+ 1ED IS L+ g+ P +1ED



and as
@n) ™" [ (L +[ED 1 DI dE dr = W] xo,cosmvem

and

[ ow |?

@0~ [ (1 +1e) T ob O dde= | 5

L2(0,00;H—1/2(R")

We finally obtain

Awl? 5 [ ow |2
| W|L2((o,oo);H~l/2(|Rn)) < |W|L2(o,oo;H1/2(Rnn + ) o

H
L2(0,00;H~1/2(R")

and according to (3.51)-(3.53),

IATuTlLZ((O,T);H—l/Z(IP")) <2 uly,

which proves (3.50). By density, we obtain Proposition 7. 1

Proposition 7 allows us to identify 41|, and 4} defined in (2.13); we can
see that DAL= V.
We have now a lemma relative to the positivity of A, in V:

LemMmA 8. For u in V we have the identity

A, u, u)=(2n)-"-lj , |4 o) V]E =12 dcdr+j|u(x, T)? dx.

Iz <
Proof. Let u be given in V, and let v = 4, u; define, for ¢ > 0, a function

v® by

7= (1+¢|&*) V20

Then v® belongs to H for every ¢ > 0, and if we set u°= B, v", the following
identity is true:

(Aru,u) = 2m) """ |

. |25(&, )2 V| &P — ot dEdr

|7l

+f |ut(x, T dx. (3.54)



But

L ‘<m|u€(¢, VI =1 dedr

= 12(E D21 + e €)' VIEP — ? dédr,

tri<lgl

and similarly,

[ luee, TP e = (2m) ™" [ |(F)(& TP d

= Q)" [ [(Fa)& TP + 6 [¢)) 7" de

Notice that every element of ¥ can be identified with a function from [0, T}
to L*(R™) which is weakly continuous in ¢; thus u(-, T) is uniquely defined.

The left-hand side of (3.54) converges to Re(d4,u, u) and the integrands
on the right-hand side are increasing as ¢ tends to zero. Therefore, the right-
hand side of (3.54) converges to

@ut| G P VT = dedr+ [l 1)

trl <

which proves Lemma 8. |

4. EXISTENCE, UNIQUENESS AND
ENERGY PROPERTIES FOR THE UNILATERAL PROBLEM

The results of Section 3 enable us to show that problem (2.18) possesses a
solution. Together with Theorem 0, and a regularity result, this will prove
that (2.1)}-(2.4) possesses an energy conserving solution.

THEOREM 9. For any ¢ in L*((0, T); H'*(R")) such that 8¢/t belongs
to L*((0, T); H™*(R™)), there exists a unique function v in

V= ju€LMO,T; H’”(ﬂ?"))/i—? € L0, T; H""’Z(P")){ ,

which satisfies the following relations:

Arv>0 (4.1)
>0 (4.2)
Arv—p,0)=0 (4.3)



Proof. Let r~ = —min{r, 0), and approximate system (4.1)}-(4.3) by a
penalty method:

A70°—(1/e)(v°)” = 9. (4.4)
Equation (4.4) indeed has a solution; if we write it as
Ou*=0 in Qr, 4.5)
(X, 0)=ui{X,0)=0 in 0, (4.6)
ou, 1 B
_-_5—__3_(”8) =¢ on X, (4.7)

it appears as the perturbation of

OW=0 in Qr,
W(X,0)=W,(X,0)=0 in 2,
oW
——5))—=¢ onZ,,

by the Lipschitz continuous nonlinearity r— —&~'r~. Therefore,

(4.5) — (4.7) can be proved to have a solution by standard technigues, such
as successive iterations.
If we multiply (4.5) by du°/0t and integrate on Q for ¢ < T, we have

I ou,

- —= (X, t

7h, (|7 @0

and, substituting (4.7) and integrating by parts, we obtain
1 ou,

— X, t

7l (|5 @

= [ oG, nyux 1y dx — | 99y dx ds. (4.8)
r z, ot

o, o,
5, Oy s

2
+ VU, :)12) dx — dx ds =0,

VWO OF) dX + 5[ 1@ )0 d

According to the functional hypothesis on ¢, we get through a Gronwall’s
lemma the following estimates:

&

;t and u° are bounded in L ((0, T); L*(£2)) uniformly with respect to &;
(4.9)

1
—;f [(@%)~ |*(x, t) dx < ¢ uniformly with respect to &. (4.10)
r



We can deduce from the above statement (4.9) that if v°®=u°;, then
v® is bounded in L=((0, T); H'/*(R")) uniformly with respect to €; 4.11)
%v;‘— is bounded in L°((0, T); H"*(R")) uniformly with respect to &.
(4.12)
From (4.11), {4.12) and Proposition 7, we deduce that

Alv®is bounded in L*([0, T); H™'*(R™)) uniformly with respect to &.
(4.13)

We may extract from the sequence (v°), a subsequence, still denoted by
(v"),, and such that

V' in L0, T; H*(R")) weak *,
808 31) : o —1/2 ”
—ar—A = in L0, Ty, H '*(R")) weak™*, 4.14)

Alv*—=A,v  in L*(0,T); H '*(R")) weak.

Let
uf= "¢, @.15)
then
u—Alv—¢  inL*((0, T); H '*(R™)) weak.
We set

u=A3v—o. (4.16)
From (4.15),
£>0 (i-e., {u, @) > 0 for all nonnegative test function @), (4.17)
and from (4.10)
v >0 4.18)

We shall now show, with the help of (now) classical monotonicity
technigues, that

(1, ) = 0. (4.19)

Notice first that (g, v) is defined because g is the sum of —p which belongs



to L*((0, T); H'*(R")) and 4 ;v which belongs to L*((0, T); H~"2(R")), so
that u is in the dual of L*((0, T); H'*(R")).
As A is positive (see Lemma 8),

(Ayv*—Arv,v°—0) 20,
so that
(A70°,09) > (A 70, ' —v) + (470, ),
and in the limit
lim (4% v9) > (A 10, v). (4.20)
On the other hand, we have
(Arvh o — ) = (1/e)((v) 7, 0 — v) = (p, v~ v°),
and in virtue of (4.18),
(Arv5 v — v — (1/e) (v — v, 0 —v¥) = (p, v — v°).

Now, we know that (s~ — r~)(r —s5) > 0 for all real numbers » and s so
that

(A 70, v) < (A7 0) + (9, v°— ).
In the limit we have thus
fm (432%, v < ()0, 0)
which gives with (4.20)
leillé (A3v" %) = (A }v, V). 4.21)
Let w be an arbitrary nonnegative function chosen in L*((0, T); H'*(R")).
Then
(Arv'w—07) = (1/e)((v) ", w—v°) = (p, w— 0,
so that, as w is nonnegative,
ALvs, w—0% > (o, w — v°). 4.22)

We can now pass to the limit easily in (4.22), and we obtain, with the help
of (4.21),

dro,w—0)> (@, w—1v), Y. 4.23)



From the definition (4.16) of g,
w,w—v)20, VweLX(0,T); H/*(R")) such that w > 0.

If we choose w=0 and w= 2v, we obtain

(/‘9 w):()a

which is (4.19) and completes the existence proof.

To prove uniqueness, let ¢ be given in (0, 7], and let v, v’ be two solutions
of (4.1)~(4.3). Then, they satisfy (4.23), i.e., Yw € L*((0, T); H/*(R")) such
that w > 0,

Alv,w—1v)> (o, w—1), (4.24)

Ao w=0")> (e w—0'), (4.25)

where here v, w and v’ mean the restrictions of these functions to the interval
[0, t] by a slight abuse of notations.

Take in (4.24) w=v' and in (4.25) w=v, and add the resulting
inequalities to obtain

Aiv—v") (—2)<0.

Lemma 8 implies that

J o= v")x, 1) dx <0,

which yields the uniqueness because ¢ is arbitrary in [0, 7]. |

Remark 10. The result of Theorem 9 does no appear to be easily and
directly deducible from theorems on variational inequalities. One could try,
for instance, to approximate (4.1)-(4.3) by the variational inequality

e K™
Are™ —o,w—0") 20, YweK™,

where K™ is a convex set of positive functions in ¥, such that X™ is bounded
for the norm of V. Theorem 8.1 of Chapter 2 of [4] shows the existence of
such a ™. But to obtain the existence of a limit of the sequence v™, some
amount of work is needed, because 4 is not V-coercive; this amount of work
is about the same as that used for proving Theorem 9.

An alternative would be to use elliptic regularization such as in
Theorem 6.1 of Chapter 3 of Ref. [4]. Then the operator A4} has the required
properties, thanks to our Theorem 6; but we miss the coercivity of 4}, or of



the nonlinearity, and we would have the same difficulty as above. In any
case, the theorem just quoted concerns inequalities of the form

Arv—@,w—0)20, YoEe KN D(4}),

which is weaker than the form (4.1}-(4.3).
Another try would be the results on the sum of monotone operators of [3];
the required condition is the following one:

[(Eu, v)* < C(Eu, u)(vlf + | Evlh),  Yu,v € D(E). *)

This means that E does not rotate too much u in Hilbert space. Let us check
that if E =AY, this requirement cannot be satisfied. Let first n =0, so that
A% can be explicitly given, according to Section I:

(AF0)t)=9' ().

Thus, if we choose ¢ and v in Z(R) with the behavior pictured in Fig. 4
below, we can see that, as ¢(7) =0, then

U20.0) = (000 dt = Ho(T)) =0,

and thus (*) cannot hold, as its left-hand side does not vanish.
In the case n > 1, choose

v %, 1) = 9(f) a(x)
w(x, 1) = y(t) a(x),
with
a,(x) = 6" exp(—|x|? 6).
Then

a(&)=n""e""" exp(—|¢I/4e");

34

t

F1G. 4. The behavior of ¢ and y.



we can evaluate (4%0, w) and (4%v, v):
(%0, w) = 2m) ™" [ VIEF =27 66, 7) (& 1) dE dr
= @m)" [66) 5 [ VIET =7 |40 ) e

For all £ and 7, we have the inequality

IVIE =" = ir] <[¢]

and we can thus evaluate
- |
VI e e[ el de |
<[1el1ar de=c, [ r" exp(—r*/2e) dre ",
0

where ¢, _, is the (n — 1)-dimensional measure of the sphere S"~'. We know
that

n+1y ]!
= 2qint D2 ( '
C, (4 ‘F 5 )]

On the other hand,

~ 00 x>
J " exp (—r?/2e?) dr = gn+ 1202 J sO1=1/2 5= g
0 0

_gntigtn-nap ( n+ 1 )
— )
Therefore,

J‘ || lde(§)|2 dé =20+ 2GRN,

In the same fashion, we can compute

f |4,(E)* d& = n"e ~"n" (e ﬁ)n — gIni2pns,

Finally,

‘ J‘ /ICII _ ,[2 'd5(6)|2 dé ¥ irn3n/22n/2 < 2(n+l)/2n(3n+l)/28,

505/53/3-5



so that
lime-o (470, w) = (2/2)" | —iz(2) §(z) dr

= @2 [ o' v s
and

lim (430,,,) =0.
Let us evaluate now |w, |5 +|4%w |3
2 2 T 2 " 2
i =[ o ax [ (v di= (5) [ v d

AGwlh <[ |dw, [ dxdr
Rax R

= [IVIEF =2 |a P |w(o) d ar
<[ € + ) |a o) v d e

<[l dr ([ la o) d

+ {1217 a0 )

~[1ver (= (%) "

n lezn(3n+1)/22(n+2)/21~(n‘;2>/r(n‘; 1) J) dr.

Therefore, the right-hand side of (x) tends to zero and the left-hand side of
(*) tends to a positive number as ¢ tends to zero. This proves that () cannot
be satisfied if E=4%. |

We have a regularity result:

PROPOSITION 11. Assume that ¢ belongs to H'(R" X (0, T)). Then, the
solution of (4.1)~(4.3) belongs to H'(R" x (0, T)).



Proof. Let
Uy(x, 1) = v(x + he;, t),
where e, is the ith vector of the basis of R”. Then we have, from (4.23),
Ajv—p,w—0)20
(Avy—@pw—v,) 20
If we take w =1, in the first of these two inequalities, then
Ay —v)h vy — )< (0f— 0,0, — V)

we divide the above inequality by A, and with the help of Lemma 8, we

obtain
2

dx\<\L

)

(vp —0)(x, 1)
h

Up—U @p—¢@ .
T ! (x,s)dx ds; (4.26)

let

ot =) 8) |
.

p dx ds = F(t);

then, (4.26) gives
/2

i’ﬁ'T_—q'L’za'xds)l \/17(}5

K19 lpnx0,m \/ﬁ’s’

Fo< (] [

and it follows that
(v, — v)/h is bounded in L((0, T); L*(R")) independently from 4.
Passing to the limit as A tends to zero, we get

P ,
'a"j_ eLo(0, T); LX(R™), Vi€ {1, n}

For the time derivative, we proceed in an analogous fashion, but more
carefully to take the boundaries into account. We thus obtain Proposition 11,
and even the information

v e L0, T); H'(R™) (4.27)
% € L=((0, T); LXR™). § (4.28)

With the help of this regularity result, we can prove energy conservation.



THEOREM 12. Let ¢ be given in H'(R" X (0,T)), and let v be the
solution of (4.1}-(4.3). Let z satisfy

Oz=0 in Qr, (4.29)
z(X,0)=z,(X,0)=0 in £, (4.30)
z(,0, ) =v{x, t) onk,. (4.31)

Then z satisfies, for all t between O and T, the following energy equality:

7

il "y v, t)fzs dx

H

8 (x, syv{x, sydxds + J' o(x, ) v(x, 1) dx. (4.32)

x,
Proof. With the smoothness assumptions that we made on ¢, we have
v € L*(0, T; H'(R"))

%’;EL‘”(O, T; LA(R"))

?—EL O, T; L*(R™)).

Therefore, z is of bounded energy for each time ¢ If we multiply (4.28) by z,
and integrate on Q,, we obtain

(3

0z oz
=—| = — , ds.
L{ P {x,0,5) % (x,0,5)dx ds

wn||wam)

We then notice that

oz
———-"A = \
o v=¢+Uu

and z belongs to L*(R™" X (0, T));2>0,v >0 and

J ui(x, ) v(x, s)dx ds =0,

In particular,

g=0 a.e. on {(x, )/v{x, 1) > 0},



so that

—,udxds

Xe)()a

But
—=0  ae. on {(x,1)/v(x, 1) =0},

whence it follows that

{ ulx, s) (x s)dxds=0.
We conclude now that
’ ov ov
i p— o —_—
JE!A, b dx ds "L,(p = dx ds,

which yields (4.31) by integration by parts.
We have a corollary to Theorem 12;

CoRrOLLARY 13. Let u, be given in Hy(2) N HY*(2), u, in HV*(2) and
S in H*(Q,). Then the problem

Ou=f in Qr, {4.33)
u(X, 0) = yy(X) in 0, (4.34)
u (X, 0)=u,(X) in Q, (4.35)

u(x,0,)>0
ou
n x0,)>0 onZX,, (4.36)

u(x,0,1¢) - g:—:—(x, 0,5)=0

possesses a unique solution u in L*(0, T; HY*(2)) N W0, T; H*(2))
which satisfies the identity, for all t,
u

L

ou
:jg S X ds. (4.37)

+IVUCE O ) 4K = - [ (g + |V ) ax




Proof. From Theorem 0, Proposition 11 and Theorem 12, we know the
existence of u in the space L*(0, T; H**(2))N W'®(0, T; H*(Q)). We
have only to check (4.36). If we multiply (4.32) by ou/ot and integrate on
Q,, we obtain

(e

ou ou
= —_—— .
J'Qtfu, dX ds +JE¢ <8n ﬁt) (x,0,s)dx ds

2
1
VU O ) X = [ (] + Vi) X

We can check immediately that, thanks to (4.35), the term

ou ou
L’ (%5) (x, 0, 5) dx ds

vanishes, and this gives exactly (4.36). 1

We would like to get rid of the restriction uy|. = 0; if we assume some
smoothness and let u, satisfy

uplp >0
ou,
—1! 20
on (.~
ouy,
"o |, =0

then this is possible by the same reduction argument as in Section 2, if w is
the solution of

Ow=f in Qy,
w(X, 0) = uy(X) in 0,
w/(X, 0) = u,(X) in 0,

w(x, 0, ) = u(x, 0) on Z.

Instead of (2.18), we have then to solve
ow
(Av)(x, £) + B(x, 1) + uy(x, 0)) o (x, 0, 0).

This is achieved by the same means as before, and yields a result similar to
Theorem 9, but we can have the energy relation (4.36) only if we know that
(Gu/on)(x,0,¢t) and (du/ot)(x, 0, t) are square integrable. This will be the



case only if (@w/dy)(x,0,1)+ (Aru,)(x, 1) belongs to H'(R" X (0, T)), in
which case we have the same conclusion as in Proposition [1. We leave the

exact smoothness requirement to the reader.

5. CAN WE GENERALIZE TO A DOMAIN OF ARBITRARY SHAPE?

We shail first start this section with a result concerning slab-shaped

domains. We have the following theorem:

THEOREM 14. Let Q=R"X(0,L) and let there be given
Hy(2) N HY(Q), u, in H'*(Q), fin H**(Q,). Then the problem

Ou=f inQy,
u(X, 0) = uy(X) in £,
u, (X, 0) = u,(X) in 2,
u>0
ou
5;>0 on Zp=({0} UL} XR"X (0, T)
ou
u- %:0

u, In

(5.1)
(5.2)
(5.3)

(5.4)

possesses a unique solution which satisfies the energy identity, for all 1,

—;—J (li_z:(X, ) l2+]Vu(X,z)|2) dXW%J (|“1|2+1Vu(,|2)dX

ou
- le S = dX ds.

Proof. Let w be the solution of

Ow=f in @y,
w(X, 0) = uy(X) in £,
wi(X, 0) = u(X) in £2,

wlr =0.

(5.5)



Then, we have to solve, f u=2z + w,
Oz=0 in @y,
z2(X,0)=0 in £2,
z(X,0)=0 in £2,

z20
oz ow
- .
m> T
oz  ow
z-(%«y 311)_0

Thanks to the propagation properties of the wave equation, the function z
vanishes identically in the set

(X 0/0<e< L2~y —L)2|}
Therefore, we shall solve for 7= L/2 the problem
ow
AT 5) D —(x,0,6),
16+ B(E) D 2 (x,0.1)
and similarly,

. - . OW
AyD + B(6)D " (x, L, 1)

Clearly 0 and 7 exist, and if 7 is defined by

0z=0 inR" X (0, ) X (0, L/2),
2(X,0)=2(X,0)=0
#(x,0,t)=0(x, t) on R" % (0, L/2),

and if analogously 7 is defined by

0z=0 in R" X (—o0, L) X (0, L/2),
#(X,0)= 7,(X,0)=0
2(x, L, ) = 8(x, 1) on R" X (0, L/2),

then we can observe that 7 vanishes on the set {(X, 1)/0<t< y} and that 7
vanishes on the set {{X, )/0 < t < L — y}; therefore, it is a routine matter to
check that z = Z + 7 solves (5.1) — (5.4) on R" X (0, L) X (0, L/2). Then it is
easy to show that (5.5) is satisfied. 1



In the same fashion, one may replace condition (5.4) by

uz0
ou
on
8u__

u%--O

>0  on{0}xR"X{(0,T),

and
ux,L,)=0 on R* X (0, T).

(547

(5.4)

The conclusion is then the same as in Theorem 14, One could very well
replace (5.4”) by a Neumann condition, instead of a Dirichlet condition;
then, one has only to assume that ;=0 at x =0, and the conclusions of

Theorem 14 still hold.
Nevertheless, we have the following important fact:

THEOREM 15. Let z belong to H'(Q,) and satisfy

Oz=0 inQr,

72X, 0)=z(X,0)=0 in 02,
z{x, 0, 1) = p{x, 1) onX,,
z(x, L, ty=w(x, t) onZX,.

Then

0
| :Zdxdi >0, Vo,
b on

t

if and only if T L.
Proof.  (if): Let Z be the solution of

Oz=0 inR"x (0, 0) X (0, T),

HX,0)=2(X,0)=0 inR" x (0, o),
#(x,0,¢) = p(x, 1) onR" X (0, T),

and let Z be the solution of

Oz7=0 in R" X (—ec, LY X (0, T,

I(X,0)=7(X,0)=0 in R" X (—o0, L),
Zx, L, t) = w(x, t) on R" x (0, T).

(5.6)



Then, if T L, z=7+ 7 is the solution of (5.6), thanks to the propagation
properties of the wave equation. But

oz 0z 0z
= =| @ —+ =) dxd
L]_zan dx di LT (Z+2) <8n +6n) dx
oz oz
=| 7= 7 dx dt,
erﬁn drdt+| Zo-dx

I
which is nonnegative according to Theorem 6.

(only if) Assume first n = 0. Then, we can explicitly give the solution of
(5.6); it will be enough to give it for t < 3L/2+ |y —L/2|:

z2(y,0)=0 if0<e<L/2—]y—L)/2),
=o(t—y) if y<t<L—y,
=y(y—L+1) ifL—y<t<y,

=ot—y)+w(y—L+1t) ifL24+|y—L/2I<t
<3L/2—]y—L/2|,

=p(t—y)+y(t—L+y)

—y(t—L—y) ifL+y<t<2L —y,
=y(y+t—L)+ol—y)
—o(y+2-2L) if2L — y <t <L+ 3.

Therefore, in particular,

oz oz _5(,0’([) ifOLt<L,
only_y  i,—e lo'@)—2p'(t—L) fL<1<L2L,
oz _ oz AU if0<rL,
onl,_r ol|,..  lw(®—200—-L) ifLLtL2L.

For any T > L, and dhy m € N, there exists functions ¢ and w such that
T
[ O (1) = 214,40 — L)) + 00" () = 2.1, ¥t — L))}
0

<—m j: 00)? + v(t)?) dt.

In the general case, one replaces ¢(f) by ¢(¢) a,(x), and w(t) by w(r) a(x),
with

a,(x)=¢&"" exp(—|x|’¢’).



Then, arguing as in Remark 10, one easily proves that [ z(0z/on) dx dt is
not positive, and not even bounded from below in

LYR" X (0, T)x ({0}, {L})=L*(Z;)- 1

The conclusion we can draw from Theorem 15 is that there is little hope
that for general domains the operator A defined by

Ou=0 in2x (0, 7),
uX,0)=u,(X,0)=0 in £,
U= ondR x 0, T=Z,,
and
Av = 2—:, n = exterior normal to £,

will be positive, or even bounded from below.

One would expect 4 to be bounded from below in the exterior of a convex
domain. Nevertheless, A is an interesting object which motivates many
mathematical studies, and this paper was one more step towards its com-
prehension.

ACKNOWLEDGMENTS

We wish to thank C. Bardos and M. Bercovier for communicating to us this problem; A.
Grigis introduced the authors to one another, and we owe much to him.

REFERENCES

1. H. Brezis. “Opérateurs maximaux monotones et semi-groupes de contraction dans les
espaces de Hilbert,” North-Holland, Amsterdam, 1973.

2. G. FiCHERA, Problemi elastastatici con vincoli unilaterali: il problema di Signorini con
ambigue condizioni al contorno, A#tf Aecad. Naz. Lincei 8 {1963-1964), 91-140.

3. A. Haraux anDp H. BRrezis, Image d'une somme d’opérateurs monotones et applications,
Israel J. Math. 23 (1976), 165~186.

4. J. L. Lions, “Quelques méthodes de résolution des problémes aux limites non linéaires,”
Dunod/Gauthier—Villars, Paris, 1969.

5. J. L. Lions aNp G. STAMPACCHIA, Variational inequalities, Comm. Pure Appl. Math. 20
(1967), 493-519.

6. M. ScHATZMAN, A hyperbolic problem of second order with unilateral constraints: The
vibrating string with a concave obstacle, J. Math. Anal. Appl. 13 (1980), 138-191.

7. M. ScuarzMman, Un probléme hyperbolique du 2éme ordere avec contrainte unilatérale: la
corde vibrante avec avec obstacle ponctuel, J. Differential Equations 36 (1980), 295-334.

8. A. SigNoring, Questioni di elasticita’ nonlinearizzata e semilinearizzata, Rend. Mat. Appl.
18 (1959).



