Strong Normalizability as a Finiteness Structure via the Taylor Expansion of λ -terms

Abstract : In the folklore of linear logic, a common intuition is that the structure of finiteness spaces, introduced by Ehrhard, semantically reflects the strong normalization property of cut-elimination. We make this intuition formal in the context of the non-deterministic λ-calculus by introducing a finiteness structure on resource terms, which is such that a λ-term is strongly normalizing iff the support of its Taylor expansion is finitary. An application of our result is the existence of a normal form for the Taylor expansion of any strongly normalizable non-deterministic λ-term.
Type de document :
Communication dans un congrès
19th International Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2016), Apr 2016, Eindhoven, Netherlands. Springer Berlin Heidelberg, Lecture Notes in Computer Science 9634, pp 408-423, 2016, Foundations of Software Science and Computation Structures
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01292923
Contributeur : Lionel Vaux Auclair <>
Soumis le : vendredi 25 mars 2016 - 13:13:29
Dernière modification le : lundi 4 mars 2019 - 14:04:19
Document(s) archivé(s) le : lundi 14 novembre 2016 - 03:34:41

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01292923, version 1
  • ARXIV : 1603.07218

Citation

Michele Pagani, Christine Tasson, Lionel Vaux. Strong Normalizability as a Finiteness Structure via the Taylor Expansion of λ -terms. 19th International Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2016), Apr 2016, Eindhoven, Netherlands. Springer Berlin Heidelberg, Lecture Notes in Computer Science 9634, pp 408-423, 2016, Foundations of Software Science and Computation Structures. 〈hal-01292923〉

Partager

Métriques

Consultations de la notice

206

Téléchargements de fichiers

43