Calibration-free match finding between vision and LIDAR

Abstract : We present a learning approach that allows to detect correspondences between visual and LIDAR measurements. In contrast to approaches that rely on calibration, we propose a learning approach that will create an implicit calibration model from training data. Our model can provide three functions: first of all, it can convert a measurement in one sensor into the coordinate system of the other, or into a distribution of probable measurements in case the transformation is not unique. Secondly, using a correspondence observation that we define, the model is able to decide if two visual/LIDAR measurements are likely to come from the same object. This is of profound importance for applications such as object detection or tracking where contributions from several sensors need to be combined. We demonstrate the feasibility of our approach by training and evaluating our system on tracklets in the KITTI database as well as on a small set of real-world scenes containing pedestrians, in which our method finds correspondences between the results of real visual and LIDAR-based detection algorithms.
Document type :
Conference papers
Liste complète des métadonnées

Cited literature [11 references]  Display  Hide  Download
Contributor : Sergio Alberto Rodriguez Florez <>
Submitted on : Wednesday, March 23, 2016 - 12:41:56 PM
Last modification on : Wednesday, February 20, 2019 - 10:16:03 PM
Document(s) archivé(s) le : Monday, November 14, 2016 - 2:27:32 AM


Files produced by the author(s)



Egor Sattarov, Alexander Gepperth, Sergio Alberto Rodriguez Florez, Roger Reynaud. Calibration-free match finding between vision and LIDAR. Intelligent Vehicles Symposium (IV), 2015 IEEE, Jun 2015, Seoul, South Korea. pp.1061 - 1067, ⟨10.1109/IVS.2015.7225825⟩. ⟨hal-01292529⟩



Record views


Files downloads