
HAL Id: hal-01291895
https://hal.science/hal-01291895

Submitted on 22 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Xvisor VirtIO-CAN: Fast Virtualized CAN
Jimmy Durand Wesolowsk, Aymen Boudguiga, Anup Patel, Julien Viard de

Galbert, Matthieu Donain, Witold Klaudel, Guillaume Scigala

To cite this version:
Jimmy Durand Wesolowsk, Aymen Boudguiga, Anup Patel, Julien Viard de Galbert, Matthieu Donain,
et al.. Xvisor VirtIO-CAN: Fast Virtualized CAN. 8th European Congress on Embedded Real Time
Software and Systems (ERTS 2016), Jan 2016, TOULOUSE, France. �hal-01291895�

https://hal.science/hal-01291895
https://hal.archives-ouvertes.fr


Xvisor VirtIO-CAN: Fast Virtualized CAN
Jimmy Durand Wesolowski12, Aymen Boudguiga2, Anup Patel3,

Julien Viard de Galbert1, Matthieu Donain4, Witold Klaudel5 and Guillaume Scigala1
1OpenWide, 23 Rue Daviel 75013–Paris, France, firstName.lastName[-lastName2]@openwide.fr

2IRT SystemX, 8 avenue de la Vauve 91120–Palaiseau, France, firstName.lastName[-lastName2]@irt-systemx.fr
3Individual Researcher, Bangalore, India, anup@brainfault.org

4PSA Peugeot Citroën, Route de Gisy 78140–Velizy-Villacoublay, France, matthieu.donain@mpsa.com
5Renault, 1 avenue du Golf 78288–Guyancourt, France, witold.klaudel@renault.com

Abstract—Nowadays, vehicles are embedding more and more
electronics to support new functions such as driver monitoring,
lane keeping and adaptive cruise control. However, adding elec-
tronics makes vehicles more expensive. Fortunately, virtualiza-
tion, via a hypervisor, reduces the number of embedded chips in
vehicle by running different guests, i.e. Operating Systems (OSes),
offering several services on the same board.

As the communication between embedded controllers is com-
pulsory for vehicles to function, an optimized virtualization of the
Controller Area Network (CAN) bus becomes mandatory. CAN
bus virtualization is challenging as it has to tackle the CAN
arbitration mechanism and to provide CAN frame broadcast in
a transparent manner. In this paper, we use the VirtIO virtual-
ization interface with a virtual CAN service and framework to
manage virtualized system external and internal CAN messaging.

Index Terms—Embedded Systems, Controller Area Network,
Virtualization, VirtIO, Xvisor

I. INTRODUCTION

By the end of the last century, transportation systems
and especially vehicles replaced some of their mechanical
functions by electronically controlled applications. Such ap-
plications include automatic control of windows, fuel injection
supervision and automatic activation of car headlights. By
the end of 2010, cars relied on software containing millions
lines of code on 70 to 100 microcontrollers, namely Electronic
Control Units (ECUs) [1], [2]. Nowadays, the customers needs
for new Advanced Driver Assistance Systems (ADAS) services
are increasing and so is the total number of embedded ECUs
in the vehicles [3]. In fact, proposing new services for drivers
on the road implies embedding more electronic boards, more
communication buses, more cables and more software, ending
up by increasing vehicle complexity. Consequently, car price is
rising with respect to the number of its embedded ECU while
it has to stay competitive on the market in order to attract
more customers.

One interesting solution to reduce the number of vehicle
embedded ECUs consists in using virtualization via a hyper-
visor. Virtualization allows to run different virtual automotive
Operating Systems (OSes), called guest OSes or guest systems,
simultaneously over one single physical board. Virtualization
defines the hypervisor as a software layer (called host) between
the guest OSes and the real hardware. The hypervisor emulates
the hardware board for each guest system (Figure 1). In

addition, it manages resources sharing between all the guests.
However, virtualization comes with a major drawback which is
computation overhead. As virtualization introduces the hyper-
visor layer between running guests and the board, it naturally
induces a delay for accessing the hardware. That is, a virtual
guest takes more time to access the memory, the network
interfaces and the CPU than a classical OS running directly
on the hardware. In fact, every time a virtual guest needs
to access a resource, it has to pass through the hypervisor
which introduces some overhead. Reducing this computation
overhead is really important especially for communication
scenarios. In practice, vehicle ECU exchange real time data
frames through the Controller Area Network (CAN) bus [4].
When virtualization is used, CAN bus virtualization overhead
must stay as low as possible.

Hypervisor (host)

Guest system 1 Guest System 2

Real hardware

Fig. 1. Bare metal hypervisor

In this paper, we introduce an optimized virtualized CAN
device. We use VirtIO API [5][6] to implement it for our
hypervisor namely Xvisor [7].

The remainder of this paper is organized as follows. Sec-
tion II reviews the CAN specification and introduces VirtIO
and Xvisor. Section III depicts our solution. Section IV con-
cludes the paper.



II. STATE OF THE ART

In this section, we give a brief description of the CAN
protocol. Then, we introduce VirtIO and Xvisor.

A. Controller Area Network

The Controller Area Network (CAN) connects Electronic
Control Units (ECUs) via a broadcast bus [4]. Each ECU is
in charge of controlling multiple actuators or sensors. In mid-
range cars, ECUs are used for Adaptive Cruise Control (ACC),
fuel injection supervision, anti-lock braking system and com-
fort services management. ECUs communicate by exchanging
CAN frames. These frames have one of the following types:

• Data frames exchange data between ECUs.
• Remote frames request the transmission of a specific Data

frame.
• Error frames indicate the presence of an error over the

CAN bus.
• Overload frames add an extra delay before the next frame

transmission.

CAN frames do not contain information about their sender
(i.e. source) or receiver (i.e. destination). They do not rely on
interfaces addressing. In practice, each ECU manages a limited
set of unique and distinct frame identifiers. A frame identifier
defines an action that must be taken by the frame receivers.

CAN bits are encoded using a Non-Return to Zero (NRZ)
code where 0-bits and 1-bits are encoded with different non-
null voltage. The value of each transmitted bit is sampled at
the end of a nominal bit time i.e. a bit time slot. In practice,
CAN 0-bits are generally referenced as dominant bits and 1-
bits as recessive bits.

CAN relies on Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) with a bitwise arbitration as bus
access method. The bitwise arbitration concerns the value of
frame identifiers. When two ECUs start the delivery of two
different frames at the same time, the ECU sending the frame
with the greatest identifier value stops its transmission at the
reception of a dominant bit while it is transmitting a recessive
bit.

B. Virtual Input Output

Virtual Input Output (VirtIO), is a virtualization abstraction
API. It was created by Paul “Rusty” Russel to create a
common layer for most virtual devices. As such, it avoids
the proliferation of virtualization techniques in drivers, whose
code and execution is similar to each others [8].

We choose to use VirtIO for CAN interface virtualization
for three reasons. On the one side, VirtIO defines a clear
and flexible API with well defined and optimized transport
abstractions, that fit our needs. On the other side, VirtIO
API is becoming the virtualization standard for host-guest
communication interfaces [9]. Finally, it is recommended and
supported by the LINUX community.

C. eXtensible Versatile hypervISOR

The eXtensible Versatile hypervISOR (Xvisor) is a type-1
monolithic embedded open-source hypervisor. A type-1 hyper-
visor, also known as bare metal hypervisor, is a virtualization
layer that runs directly on the hardware. Meanwhile type-2
hypervisor is executed on top of an operating system. Xvisor
is said to be Monolithic, as it has a common software for host
hardware access, CPU virtualization, and guest IO emulation.
Meanwhile, micro-kernelized software kernels contain basic
hardware access and CPU virtualization, but they relies on a
management guest to handle the other services (e.g. drivers,
file systems, . . . ) [7].

By design, it has a fast interruption management. Bench-
marks demonstrated a low overhead on both guest instruction
execution and guest memory operations [10]. For example,
a Xvisor guest yields an average of 2.550.336 Dhrystone
Millions of Instruction Per Second (DMIPS), compared to
2.558.851 DMIPS for a native system. In addition, the Read-
Modify-Write throughput on a guest is about 556,13 MB/s
compared to 564,58 MB/s on a native system.

Xvisor allows having an emulated interface if needed, a
paravirtualized one, or even a direct access to hardware when
the resource is not shared.

To conclude, Xvisor flexibility suits well our need to use
the already existing VirtIO interfaces, and to adapt it to create
a new one for the CAN bus VirtIO-CAN.

III. THE CAN VIRTIO

In the following section, we first list the industrial contraints
that must be fulfilled by our proposed solution, VirtIO-CAN.
Then, we describe it in details.

A. VirtIO-CAN Prerequisites

The following list depicts the requirements regarding CAN
virtual software:

1) The guest high level (userland) certified softwares must
remain the same. Thus, the interface for the CAN
must not change, i.e. it has to present a SocketCAN
compatible driver for LINUX guests.

2) The different guest systems can communicate not only
together, but also indistinguishably with the external
physical bus.

3) The access must be controlled. Some systems must not
have access to or read from the virtual and physical
buses.

4) The message priority must be supported.
5) Even guest-to-guest messages must go through the phys-

ical bus, as those frames can be used for monitoring or
debugging, for example, during a diagnosis with an On-
Board Board Diagnostics plug.

6) Xvisor interface for the CAN management must be
simple.

7) The overall performance must be comparable, if not
indistinguishable, from a non-virtualized (or native) sys-
tems.



B. VirtIO-CAN

In order to reach good performances, the CAN communi-
cation cannot be fully emulated, i.e. a fully virtualized. Full
virtualization implies trapping and handling every operation on
the device from the virtualized system, in a complex manner,
to simulate the hardware expected behavior.

As CAN resources are shared, direct hardware access,
namely passthrough, cannot be used. This would give all
guests the complete access to the same hardware and registers
in particular. A guest could then overwrite the controller
configuration or the data set by another guest. In addition,
it may perform conflicting operations that cause errors. In
the worst case, it may render the whole controller or system
unsusable. Thus, direct hardware access can only be used for
exclusive hardware access from one system, either the host or
one guest.

Our considered solution, referred to by paravirtualization,
uses a compromise between full virtualization and passthrough
approaches. The guest driver provides only an interface on
the host, with no knowledge of the underlying hardware. This
results in a better overall performance and a lower complexity
than emulation. Meanwhile, paravirtualization keeps the latter
advantages of controlling the resource access.

We choose to achieve this communication through the
VirtIO mechanism (presented in Section II-B). VirtIO defines
a communication standard for the virtualization of multiple de-
vices (console, network, disk, and soon graphical devices) over
a variety of tranport medium (memory-mapped or PCI bus). It
allows an identification of the device type, with the available
features on the host and the guest side, and the configuration
desired by the guest. High throughput data can be passed
through VirtIO queues called virtqueues, and smaller specific
data through the VirtIO configuration read/write functions.

VirtIO queues are designed for large data transfers. Their
data footprint is at least 4 KB of memory with a queuing
mechanism. CAN data frame has 29-bit long identifier and
64-bit long payload. Consequently, using VirtIO queues is
inadequate because it introduces a large footprint and a cum-
bersome overhead. So, we decide to use the alternative data
transmission mechanism: read/write configuration functions.
That is, the guest access are done at specific offset on the host
interface through VirtIO.

IV. VIRTIO-CAN IMPLEMENTATION

In this section, we describe the implementation and mecha-
nisms of the virtual CAN. First, we describe the initialization
of the different layers. Then, we not only depict a frame
transmission from a virtual system to the physical bus, but
we also detail the reception process in the opposite direction.
Finally, we present an internal frame transmission between
guests on the same board.

A. Initialization Phase

1) Initializing the hypervisor driver: In order to avoid
mixing the virtualization mechanism and the hardware man-
agement, the hardware controller driver is initialized and

operates the same way without virtualization. Depending on
the underlying material, CAN mailbox number varies. Note
that a mailbox is a buffer designed to filter CAN frames with
an identification mask. Each mailbox contains only one CAN
frame. It is used as reception and emission buffer with a
priority management. Mailboxes can be grouped to be used
as First In First Out (FIFO) queues. Due to the design of the
CAN bus, mailboxes assignment and setup is known and set in
advance. We can define the priority of mailboxes and FIFOs.
That is a FIFO contains a group of mailboxes with a defined
set of priority.

FIFOs are set if the number of virtual-mailboxes is greater
than the one available in the hardware controller. If the
hardware does not allow setting FIFOs, the service will not
be initialized to prevent misuse.

CAN hardware controller

Mailboxes

RxRx Rx Rx Rx RxTxTxTxTxTx Rx Rx queue

Defined by hardware (can be configurable)

Priority+ -

Fig. 2. CAN hardware controller system

2) Initializing the hypervisor service: We denote by
VirtCAN the hypervisor service for the CAN framework. As
such we avoid the ambiguity with the VCAN [11]. VirtCAN
creates virtual-mailboxes with FIFO support to separate the
hardware support from virtual system needs. It also provides
a communication layer through the VirtIO framework to the
guest system.

The host configuration sets the number of mailboxes and
FIFOs to be created (Figure 3). The virtual-mailboxes are
buffer slots of four 32-bit words each. The three first slots
correspond to the CAN frame itself, and the last one serves
for control and status storage (Figure 4).

VirtCAN framework service

Mailboxes Rx queue Rx queue Tx queue

Defined by the host VirtCAN configuration

Priorit
y

+ -

Fig. 3. VirtCAN system

Sending a frame on a particular mailbox returns an error to
the guest if the latter already stores one that was not sent. A
mailbox read twice without new matching frame also returns
an error. However, by design a CAN messaging system avoids
that.

The virtual FIFOs use the same buffer format (Figure 4), but
frames are queued. A guest system can read or write a defined
number of frames before an error is reported. In general, FIFOs
are used for lower priority frame reception.



However, the VirtCAN also permits the creation of trans-
mission queues.

VirtCAN frame buffer format

frame buffer 4 32-bit words
ID (11 or 29 bits) Data (0 – 3 bytes) Data (4 – 8 bytes) Control

Reserved / Unused

Fig. 4. VirtCAN framework buffer format

The hypervisor also has a configuration file for each guest
to describe which and how a virtual-mailbox is used by this
virtual system. Two guests cannot share the same virtual-
mailbox to transmit or to receive a frame. However, they
can have access to the same FIFOs. Each guest mailbox is
a memory pointer to a virtual-mailbox.

Mailboxes Rx queue Rx queue Tx queue

Priority+

Guest 1 (highest priority system)

Mailboxes

Tx Rx Rx Rx Tx Tx Tx Rx

Guest 1 configuration

Guest 2 (low priority system)

Mailboxes

Tx Rx Rx Rx Tx Tx

Guest 2 configuration

Guest 3 (low priority system)

FIFOs

Rx Tx

Guest 3 configuration

VirtCAN
Xvisor

-

Fig. 5. Guest to VirtCAN mailbox association

3) Initializing the guest driver: The guest driver uses the
VirtIO API to detect the VirtIO device and configure the
required mailboxes and FIFOs. The hypervisor checks every
guest setup to ensure its consistency.

B. Guest CAN Frame Transmission

Guests start transmitting at the end of the initialization
phase. The VirtIO driver receives the frame from the higher
layers (application, library, runnable, task,. . . ). Then, it sends it
to the hypervisor VirtCAN framework. The guest side VirtIO
writes the frame at the offset formed by the addition of the
mailbox or FIFO offset and an initial base offset for mailboxes.
The latter is set by the VirtIO-CAN API.

The CAN frame identifier (ID) is written on a 32-bit word
while the frame data are written on 8 bytes. Finally, the 32-
bit control word is set. Note the frame payload can be less
than the reserved 8 bytes. If a guest try to write a CAN frame
with an unauthorized identifier, it is discarded and a warning
is returned by the framework.

For example, to write a frame in its mailbox n , a guest has
to write the 4 words of 32-bit in the VirtIO device at the offset:
mailbox offset + VirtCAN buffer size × n

When the control word is written, the hypervisor VirtCAN
service writes the frame to the CAN hardware controller. If

virtual-mailboxes number exceeds the physical-mailboxes one,
the excedent content is written in the highest priority transmit
FIFO. The system integrator knows the number of excedent
mailboxes as he knows the total number of the mailboxes of
the guest, the VirtCAN and the hardware.

Mailboxes Rx queue Rx queue Tx queue

Priority+ -

VirtCAN framework service

CAN hardware controller

Mailboxes
RxRx Rx Rx Rx RxTxTxTxTxTx Rx Rx queueTx queue

Priority+ -

Fig. 6. VirtCAN mailbox to hardware frame transmission

C. Guest CAN Frame Reception

The frame reception process adapts the same idea of frame
transmission of Section IV-B. When a frame is received by the
hardware controller, it is copied in the virtual-mailbox match-
ing the frame identifier. The number of physical-mailboxes
can be lower than the total number of virtual-mailboxes. Then,
the host must be able to receive all the frames. If no mailbox
matches a frame identifier, it is queued in the highest priority
FIFO. Note that the physical-mailboxes must be principally
used for the higher priority frames. If all the reception FIFOs
are full, or if there is no FIFO at all, the frame is discarded.
In addition, an error message is returned.

Once a message is received in the VirtCAN layer, the
service checks which guest is associated to this mailbox, write
a flag corresponding to the guest mailbox number in the VirtIO
configuration memory at a specified offset, and triggers a CAN
interrupt to the guest.

When the guest driver receives the interrupt, it reads the
VirtIO device for the mailbox flags. Then, the driver can
submit the frame content to the upper layers. The reception
flags synchronization between VirtCAN and the guest is not
necessary. In fact, all VirtIO write operations done by the
guest are trapped by the hypervisor. Then they are used by
VirtCAN which updates itself the real flag status.

D. Guest-to-Guest CAN Frame Transmission

The Guest-to-Guest CAN frame transmission matches the
aforementioned CAN frame transmission. The different layers
operates as described in Section IV-B. In addition, we create
a special association between a guest reception mailbox and a
transmitting virtual-mailbox. When a frame is sent by a guest,
these association sets are checked to notify the destination
guest(s). Then, VirtCAN sends the frame to the hardware
controller.



Mailboxes Rx queue Rx queue Tx queue

Priority

+

-

Guest

Mailboxes

Tx Rx Rx Rx Tx Tx Tx Rx

Guest 1 configuration

VirtCAN framework service

CAN hardware controller

Mailboxes
RxRx Rx Rx Rx RxTxTxTxTxTx Rx Rx queueTx queue

Priority+ -

Mb flags

Fig. 7. Hardware frame reception to guest layers

If the frame is also destinated to another guest on the
same board, VirtCAN set the guest flags, accordingly to the
predefined association.

Mailboxes Rx queue Rx queue Tx queue

Priority+ -

Guest 1

Mailboxes

Tx Rx Rx Rx Tx Tx Tx Rx

Guest 1 configuration

VirtCAN

CAN hardware controller

Mailboxes
RxRx Rx Rx Rx RxTxTxTxTxTx Rx Rx queueTx queue

Priority+ -

Flags

Mailboxes

Tx Rx Rx Rx Tx Tx Tx Rx

Guest 2 configuration

Xvisor

Guest 2

Fig. 8. Internal frame communication

V. CONCLUSIONS

In this work, we propose a framework, VirtCAN, to
manage internal and external CAN bus virtualization with error
management. The virtualization scheme is also preserved, as
the hardware and the virtualization layers are clearly separated
as seen in Figure 9.

As presented in the Xvisor memory benchmarks [10], the
memory throughput of emulated operating systems is as good
as a native one (up to 98%). There are only two memory copies
for both frame direction: one from the guest to VirtCAN,
and one from VirtCAN to the hardware for a frame emission
or reception. Moreover, no specific scheduling is required to
implement this mechanism.

Our future work consists in implementing VirtCAN. As
the higher CAN transmission speed is up to 1 MB/s, and the
memory throughput between guests and host is superior to 100
MB/s, we expect a low virtualization overhead, and a very
close bus occupation and behavior between the native system
and the virtualized one.

Hypervisor (host)

Guest system 1

Real hardware

VirtIO-CAN

Application

CAN controller

VirtIO-CAN

Virtual-mailboxes

Virtual-queues

VirtCAN

Driver

VirtIO

VirtIO

Guest system 1

VirtIO-CAN

Application

VirtIO

Fig. 9. System design

REFERENCES

[1] Charette Robert. This car runs on code, 2009.
[2] J.Motavalli. The dozens of computers that make modern cars go (and

stop). 2010. Accessed: 2015-06-16.
[3] G.Pitcher. Growing number of ecus forces new approach to cars

electrical architecture. 2012. Accessed: 2015-06-16.
[4] CAN Specification Version 2.0. Standard, Bosch, Stuttgart, September

1991.
[5] Jake Edge. An api for virtual i/o: virtio. 2007. Accessed: 2015-10-23.
[6] Dor Laor. VirtIO, 2008.
[7] Anup Patel. Xvisor: eXtensible Versatile hypervISOR. Accessed: 2014-

05-05.
[8] J.Edge. An api for virtual i/o: virtio. 2007. Accessed: 2015-06-17.
[9] R.Russel. virtio: Towards a de-facto standard for virtual i/o devices.

pages 1–2, 2013. Accessed: 2015-04-08.
[10] A. Patel, M.Daftedar, M.Shalan, and M.W.El-Kharashi. Embedded

hypervisor xvisor: A comparitive analysis. pages 4–9, 2015.
[11] Urs Thuermann. The virtual CAN driver.


