Local limit theorems and renewal theory with no moments

Abstract : We study renewals τ with index 0: the inter-arrival distribution is P(τ 1 = n) = ϕ(n)n −1 , with ϕ(·) slowly varying. We obtain a strong renewal theorem, that is P(n ∈ τ) n→∞ ∼ P(τ 1 = n)/P(τ 1 ≥ n) 2. If instead we only assume regular variation of P(n ∈ τ) and slow variation of U n := n k=0 P(k ∈ τ), we obtain a similar equivalence but with P(τ 1 = n) replaced by its average over a short interval. We give an application to the local asymptotics of the distribution of the first intersection of two independent renewals. Along the way we prove a local limit theorem and a local (upward) large deviation theorem, giving the asymptotics of P(τ k = n) when n is at least the typical length of τ k. We further derive downward moderate and large deviations estimates, that is, the asymptotics of P(τ k ≤ n) when n is much smaller than the typical length of τ k .
Type de document :
Article dans une revue
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2016, 21 (66), 〈10.1214/16-EJP13〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01291344
Contributeur : Quentin Berger <>
Soumis le : jeudi 10 novembre 2016 - 18:13:37
Dernière modification le : mardi 10 octobre 2017 - 13:47:43
Document(s) archivé(s) le : mardi 21 mars 2017 - 12:27:49

Fichiers

AlphaZero_Rev.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

INSMI | UPMC | USPC | PMA

Citation

Kenneth S. Alexander, Quentin Berger. Local limit theorems and renewal theory with no moments. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2016, 21 (66), 〈10.1214/16-EJP13〉. 〈hal-01291344v2〉

Partager

Métriques

Consultations de la notice

93

Téléchargements de fichiers

86