Local asymptotics for the first intersection of two independent renewals

Abstract : We study the intersection of two independent renewal processes, ρ = τ ∩σ. Assuming that P(τ 1 = n) = ϕ(n) n −(1+α) and P(σ 1 = n) = ϕ(n) n −(1+ α) for some α, α 0 and some slowly varying ϕ, ϕ, we give the asymptotic behavior first of P(ρ 1 > n) (which is straightforward except in the case of min(α, α) = 1) and then of P(ρ 1 = n). The result may be viewed as a kind of reverse renewal theorem, as we determine probabilities P(ρ 1 = n) while knowing asymptotically the renewal mass function P(n ∈ ρ) = P(n ∈ τ)P(n ∈ σ). Our results can be used to bound coupling-related quantities, specifically the increments |P(n ∈ τ) − P(n − 1 ∈ τ)| of the renewal mass function. 1. Intersection of two independent renewals We consider two independent (discrete) renewal processes τ and σ, whose law are denoted respectively P τ and P σ , and the renewal process of intersections, ρ = τ ∩ σ. We denote P = P τ ⊗ P σ. The process ρ appears in various contexts. In pinning models, for example, it may appear directly in the definition of the model (as in [1], where σ represents sites with nonzero disorder values, and τ corresponds to the polymer being pinned) or it appears in the computation of the variance of the partition function via a replica method (see for example [20]), and is central in deciding whether disorder is relevant or irrelevant in these models, cf. [3]. When τ and σ have the same inter-arrival distribution, ρ 1 is related to the coupling time of τ and σ, if we allow τ and σ to start at different points. In particular, in the case µ := E[τ 1 ] < +∞, the coupling time ρ 1 has been used to study the rate of convergence in the renewal theorem, see [16, 17], using that
Type de document :
Article dans une revue
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2016, 21 (68), 〈10.1214/16-EJP17〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01291340
Contributeur : Quentin Berger <>
Soumis le : lundi 21 mars 2016 - 13:38:18
Dernière modification le : vendredi 4 janvier 2019 - 17:32:34
Document(s) archivé(s) le : dimanche 13 novembre 2016 - 20:55:10

Fichiers

IntersectRenewals_29Jan16_KA.p...
Fichiers produits par l'(les) auteur(s)

  •  rho1.pdf Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Kenneth S. Alexander, Quentin Berger. Local asymptotics for the first intersection of two independent renewals. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2016, 21 (68), 〈10.1214/16-EJP17〉. 〈hal-01291340〉

Partager

Métriques

Consultations de la notice

289

Téléchargements de fichiers

29