Skip to Main content Skip to Navigation
Journal articles

Local asymptotics for the first intersection of two independent renewals

Abstract : We study the intersection of two independent renewal processes, ρ = τ ∩σ. Assuming that P(τ 1 = n) = ϕ(n) n −(1+α) and P(σ 1 = n) = ϕ(n) n −(1+ α) for some α, α 0 and some slowly varying ϕ, ϕ, we give the asymptotic behavior first of P(ρ 1 > n) (which is straightforward except in the case of min(α, α) = 1) and then of P(ρ 1 = n). The result may be viewed as a kind of reverse renewal theorem, as we determine probabilities P(ρ 1 = n) while knowing asymptotically the renewal mass function P(n ∈ ρ) = P(n ∈ τ)P(n ∈ σ). Our results can be used to bound coupling-related quantities, specifically the increments |P(n ∈ τ) − P(n − 1 ∈ τ)| of the renewal mass function. 1. Intersection of two independent renewals We consider two independent (discrete) renewal processes τ and σ, whose law are denoted respectively P τ and P σ , and the renewal process of intersections, ρ = τ ∩ σ. We denote P = P τ ⊗ P σ. The process ρ appears in various contexts. In pinning models, for example, it may appear directly in the definition of the model (as in [1], where σ represents sites with nonzero disorder values, and τ corresponds to the polymer being pinned) or it appears in the computation of the variance of the partition function via a replica method (see for example [20]), and is central in deciding whether disorder is relevant or irrelevant in these models, cf. [3]. When τ and σ have the same inter-arrival distribution, ρ 1 is related to the coupling time of τ and σ, if we allow τ and σ to start at different points. In particular, in the case µ := E[τ 1 ] < +∞, the coupling time ρ 1 has been used to study the rate of convergence in the renewal theorem, see [16, 17], using that
Document type :
Journal articles
Complete list of metadatas
Contributor : Quentin Berger <>
Submitted on : Monday, March 21, 2016 - 1:38:18 PM
Last modification on : Tuesday, May 26, 2020 - 9:06:03 PM
Document(s) archivé(s) le : Sunday, November 13, 2016 - 8:55:10 PM


Files produced by the author(s)


Distributed under a Creative Commons Attribution 4.0 International License



Kenneth S. Alexander, Quentin Berger. Local asymptotics for the first intersection of two independent renewals. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2016, 21 (68), ⟨10.1214/16-EJP17⟩. ⟨hal-01291340⟩



Record views


Files downloads