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Abstract

We study here the computation of shallow-water equations with topography by Finite
Volume methods, in a one-dimensional framework (though all methods introduced may be
naturally extended in two dimensions). All methods performed are based on a dicretisation
of the topography by a piecewise function constant on each cell of the mesh, from an original
idea of A.Y. Le Roux et al.. Whereas the Well-Balanced scheme of A.Y. Le Roux is based
on the exact resolution of each Riemann problem, we consider here approximate Riemann
solvers, namely the VFRoencv schemes. Several single step methods are derived from this
formalism, and numerical results are compared to a fractional step method. Some tests cases
are presented : convergence to steady states in subcritical and supercritical configurations,
occurence of dry area by a drain over a bump and occurence of vacuum by a double rarefaction
wave over a step. Numerical schemes, combined with an appropriate high order extension,
provide accurate and convergent approximations.
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1 Introduction

We study in this paper some approximate Godunov schemes to compute shallow-water equations
with a source term of topography, in a one-dimensional framework. All methods presented may
be extended naturally to the 2D model.

Shallow-water equations are based on conservation laws and provide an hyperbolic system. How-
ever, topography introduces some source term related to the unknown. Hence, analytic properties
of the model of isentropic Euler equations are deeply modified, in comparison with the homoge-
neous case. For instance, a well-known problem is the occurence of other equilibrium states (or
steady states), due to the presence of the source term.

Several ways to compute conservation laws with source term have already been investigated. The
main problem is the approximation of the source term and the numerical preservation of properties
fulfilled by the continuous system. Some Finite Volume method have been proposed, in particular
the Well Balanced schemes, which can maintain all steady states. These schemes have been initially
introduced by J.M. Greenberg and A.Y. Le Roux in [16] and [17] in the scalar case (see also [14]
and [2]). Well Balanced schemes have been recently extended to shallow-water equations with
topography in [1] and [18] and friction in [6]. Since the Well Balanced scheme is based on an exact
Riemann solver as the Godunov scheme (see [13]), its main drawbacks are its calculation cost and
the need to compute the “exact” solution of the Riemann problem. Other Finite Volume methods
to deal with source terms exist too, for instance based on the Roe scheme (see [23] and [12]), or
based on another approximation of the source term, like in [20].

Some properties of the continuous model (Riemann invariants, jump relations, ...) are first exposed,
and a study of the Riemann problem is briefly recalled. Thereafter, some Godunov schemes are
introduced to compute shallow-water equations, derived from the VFRoencv formalism (see [5]).
Some applications of VFRoencv schemes are provided for the Euler equations (in [22], [5] and
[11]), for shallow-water equations with a flat bottom in [4] and for turbulent compressible flows
[3]. The VFRoencv schemes are based on an arbitrary change of variable, and on a linearisation
of each interface Riemann problem. In the homogeneous case, the numerical flux is defined using
the exact solution of the linearised Riemann problem and the conservative flux. However, the
source term “breaks” the conservativity of the model. Thus, using a piecewise constant function to
approximate the bottom, some approximate Riemann solvers are presented. The main advantages
of this approach are the natural integration of the source term in the numerical methods and the
use of a linearised Riemann problem, which minimizes the CPU time. Note that a scheme which
exactly preserves a large class of steady states is obtained. In addition, a fractionnal step method
is performed, based on the VFRoencv scheme introduced in [4]. This method enables to deal with
vacuum and provides good results too. To complete this presentation, a higher order extension
is provided, to increase the accuracy of the schemes when computing unsteady configurations or
flows at rest.

Several numerical experiments are presented. All the test cases are one-dimensional, and are based
on a non trivial topography. Indeed, applications of shallow-water equations are one-dimensional
or two-dimensional configurations. Hence, computational limitations are rather different from the
gas dynamics and numerical experiments may be performed on mesh containing several hundreds



nodes. The tests include subcritical and transcritical flows over a bump [15] and a drain with a non
flat bottom. The convergence towards steady states is measured. A vacuum occurence by a double
rarefaction wave over a step is tested too. All the numerical tests confirm the good behaviour of
the numerical methods, including the fractional step method.

Eventually, some complementary tests with the Godunov and the VFRoe method are provided in
appendix.

2 The shallow-water equations with topography

2.1 Governing equations

The shallow-water equations represent a free surface flow of incompressible water. The two-
dimensional system may be written as follows :

ht 4 (hu) o + (hv) , =0 (1a)
() () + () +9 () = =9h(Z)0 (1b)
(hv) ¢ + (huv) ; + (hv?) , + g(%)yy = —gh(Z;s)y (1c)

where h denotes the water height, u = *(u, v) the velocity, g the gravity constant and VZ; the
bed slope (g and Z¢(z,y) are given, and Z; must be at least C®(R?)) (see figure 1).

Figure 1: Mean variables

This study is restricted to the computation by Finite Volume schemes (see [9]). Since the hyperbolic
system (1) remains unchanged under frame rotation, this two-dimensional problem may be solved



considering on each interface of the mesh the following system :

b4 (htp) . =0 (2a)
(hun) + + (hui —+ g%z) = —gh(Z;) , (2b)
(hur) ¢ + (hupus) n =0 (2¢)

where up, = u.n, u; = u.r, n and 7 the normal and the tangential vector to the interface (||n|| =
[I7]| = 1), and ( ), the derivate along the normal vector n.

The pure one-dimensional shallow-water equations may be written as follows :
hi+ (hu) » =0 (3a)

h2
(hu) + + (hu2 + g—) +ghZ}(x) = 0. (3b)

2
We focus in this paper on the numerical resolution of the one-dimensional system (3).

Let us note that 2 and hu (also denoted @ in the following) are the conservative variables. So,
vacuum (or dry bed) may be represented by h = hu = 0, which implies that v is not defined.

Remark 1. The change of variable from (h, Q) to (h,u) leads to the following equations for smooth
solutions :

hi+Qq.=0
u2
ut~+ (7 +g(h +Zf)) =0.

)

where 1 = (u?/2 + g(h + Z;)).

These equations enable to define some stationary smooth solutions as follows :
Q=0 and v ,=0. (4)

One may add to these equations Rankine Hugoniot relations (on smooth topography) for stationary
shocks to complete the definition of stationary states.

2.2 The Riemann problem on a flat bottom

Assuming that the river bed is flat (ie Z}(a:) = 0), the system (3) becomes homogeneous. Hence,
we obtain a conservative system, which lead to the following Riemann problem :

h,t‘i‘Q,x =0

QZ h2 B
Q,t+<h+92 ,x_o (5)
(hL,QL) ifl‘<0,

(h, Q){x,0) = {(hR,QR) ife>0.



This problem, which is also the Riemann problem for isentropic Euler equations (for a particular
state law) may be classically solved. Tts solution is a similarity solution (ie a function of x/¢)
composed by three constant states, (hr,Qpr), (h1,Q1) and (hg, Qr) separated by two Genuinely
Non Linear fields associated eith eigenvalues u — ¢ and u + ¢ (where ¢ = \/gh). The intermediate
state (h1, @1) may be computed using through the 1-wave :

UL—Q(\/ghl—\/ghL) if hy <hL,

hi+hp . (6)
—(hy —h fh hr.
ur, (1 L) g2h1hL 1 hy > hr

Uy =

and through the 2-wave :

ur + 2(\/gh1 — Vghr) if hy < hg,

hi+hgp . (7)
Th hg.

Unhy TR

The latter two curves are derived from the Riemann invariants (when hy < hy and hy < hg) for
rarefaction waves and from the Rankine Hugoniot relations (when hy > hr and hy > hg) for shock
waves. Note that the intermediate velocity uy 1s defined only if :

ugp —ur < 2(\/ghr +/ghr). (8)

Otherwise, hy and )1 become null, and u; is undefined.

Uy =

ug+ (h1 —hr)\ /g

2.3 The Riemann problem with a piecewise constant topography

Following the idea developed by A.Y. Le Roux in [18], the topography is described by a piece-
wise constant function. Therefore, adding the “partial” differential equation concerning 7, the
following Riemann problem may be obtained :

nytIO
hi+4 (hu) ;=0
QZ h2
Q,t+<7+g7 x+gh(Zf),x:0 (9)
(h Q g )(l‘ 0): (hL,QL,ZfL) ifl‘<0,
e A (hit,Qr, Z; ) if @ > 0.

Note that this Riemann problem does not correspond to the Riemann problem associated with the
system (3), since the topography is not smooth. The jump of topography along the curve z/t =0
introduces a problem for the definition of the product of distributions, focusing on non smooth
solutions (see [7] and [8] for more details). So, the jump relations across the discontinuity #/t =0
are not defined. Assuming that h > 0 and restricting to smooth solutions, the system (9) may be
written :

Zir =0 (10a)

hi+Q-=0 (10b)
u2

u7t+ (7 —I—g(h—l—Zf)) IO. (10(2)

)



We note ¢ = (u?/2+g(h+Z;)) in the following. One may deduce the conservation law on entropy
for non viscous smooth solutions :

e+ (Qﬂ’),x =0 (11)
2 2
U:h7 +g7—|—thf. (12)

Moreover, system (10) provides the Riemann invariants through the stationary wave. Since the
wave located at 2/t = 0 is a contact discontinuity, we assume that the Rankine Hugoniot rela-
tions identifies with the Riemann invariants. Thus, the Riemann problem (9) admits a Linearly
Degenerated field of speed 0 such that :

[l =0 (13a)
[4] =0 (13b)

where [«] represents the jump of « across the wave.

Two Genuinely Non Linear fields also compose the solution of the Riemann problem (9), which
are the same as in the flat bottom case. Hence, to connect a state W to a state W, through the
wave u — ¢, one may use the following relations (a rarefaction wave occurs when h < hg, and a
shock wave occurs when A > k) :

ZfIZfa (14&)
g — 2(vgh — Vgha)  if h < hg,

u= h+h . (14b)
g — (h—ha)r /g Shh i h > hg.

In the same way, to connect a state W to a state W, through the wave u 4 ¢, one may use the
following relations (a rarefaction wave occurs when h < hp, and a shock wave occurs when h > hy) :

Zs =7y, (15a)
ub—|—2(\/gh—\/ghb) if h < hy,

U= h+hy . (15b)
h—nh fh>hg.
up + ( b/ 9 Shis if h > hy

Moreover, to connect a state W to a state W, through the stationary wave, one uses the Riemann
invariants :

Q=@ (16a)
V=t (16b)

Note that the exact resolution of the Riemann problem (9) is not obvious, though all fields and
associated Riemann invariants and jump relations are known. Indeed, contrary to a “classical”
Riemann problem (Euler equations for instance), the three waves of this Riemann problem are not
ordered and a GNL wave may be superposed with the LD wave (see [18]).



We will discuss below two families of schemes which are intended to provide a convergent approx-
imation of the above mentionned system. The first series is based on straightforward approximate
Godunov schemes which account for topography. The second series is based on the fractional step
method.

3 Single step methods

We present in this section several ways to solve the shallow-water equations with source term by
Finite Volume schemes (see [9] and [24] for instance). The description of the methods computed
herein is split in two steps : the Finite Volume scheme provided by integration of (3) and the solver
at each interface.

3.1 An approximate Godunov-type scheme

We introduce herein a Finite Volume scheme following the idea proposed by J.M. Greenberg, A.Y.
Le Roux et al in [16] and [17].

Focusing on system (3), it consists in using a piecewise bottom, flat on each cell, in the “continuous”
framework (see [18] and [6]). Thus, the source term —ghZ}(x) is reduced to a sum of Dirac
mass occuring on each interface [7]. Hence, since the Finite Volume formalism is based on the
integration of the system (3) on a cell Ja;_1/2; @i1/2[x[t";¢" [, the source term does not appear
explicitly (contrary to the scheme investigated in [12] for instance). As mentionned above, such
an approximation of the topography introduces a a stationary wave at the interface of each local
Riemann problem. Though the Well Balanced scheme of J.M. Greenberg and A.Y. Le Roux is
based on the exact solution of (9), we focus here on approximate Riemann solvers. These Riemann
solvers are based on an approximate solution of the problem (9), and the numerical flux is computed
from the conservative flux and the approximate solution at each interface.

Let us note W = *(Z;, h, Q) the conservative variable, F(W) = (0, Q, hu®+ gh*/2) the associated
conservative flux and Az; and At the space and time steps. We denote W the approximation de

1 fl‘,+1/2 W(l‘,tn)dl‘

A_x, x,_l/Q
So, the Finite Volume scheme may be written as follows :
n n At * _
Wit = - E(F< 12075 Wi, Wiga))

(17)
_F<M/i*—1/2(0+5 Wi_1, VVZ)))
where VV;‘_I_l/z(x/t; Wi, Wit1) is the (exact or approximate) solution of the Riemann problem (9)
with L = ¢ and R = ¢ + 1. As mentionned above, the source term only contributes to the
computation of the (exact or approximate) solutions ;‘_I_l/z(x/t; Wi, Wit1) but it does not appear
explicitly in the expression of the scheme (17). However, the approximation of the topography
by a piecewise constant fonction implies that the numerical flux is not continuous through each
interface of the mesh, contrary to the homogenous and conservative case. So, whereas the numerical



flux associated with equation (3a) has to be continuous (since this equation is homogenous and
conservative), the numerical flux associated with equation (3b) becomes discontinuous in the non
flat bottom case, according to the relations (13). In order to obtain a constant numerical flux for
equation (3a), we will have, in some cases, to modify the scheme (17) (see (21) for instance).

Note that the Finite Volume scheme (17) associated with the exact interface Riemann solver (ie
the Well-Balanced scheme presented in [18]) is able to maintain all steady states. Moreover, let us
emphasize that the scheme (17) may be easily extended to a multi-dimensional framework (indeed,
the formalism presented is very similar to Finite Volume schemes).

3.2 The VFRoencv formalism

Since the Well Balanced scheme ([18]) is based on an exact Riemann solver as the Godunov scheme
([13]), its main drawbacks are its calculation cost and the need to compute the exact solution of
the Riemann problem (9). Thus, the state Will/z(l‘/t; Wi, Wit1) is computed by approximate
Riemann solvers.

All the Riemann solvers presented here may be derived from the VFRoencv formalism [5, 11].
The VFRoencv schemes are based on the exact solution of a linearised Riemann problem. Their
construction may be split in three steps. The first step consists in writting the initial system under
a non-conservative form, by an arbitrary change of variable Y (W) (we denote by W(Y') the inverse
change of variable). Afterwards, the Riemann problem (9) is linearised averaging the convection
matrix :

Y+ B(Y)Y, =0
Y =Y(W if 0 1
Y, 0)= 4k (Wr) ifo< (18)
Yr = Y(WR) ifz>0
~ Y +4Y
where B(Y) = (Wy (V)" Fyy (W(Y)) Wy (V) and ¥ = 22T
As a result, the Riemann problem (9) becomes a linear Riemann problem, which is solved exactly.
Denoting (Ix)x=1,23 and (¥r)g=1,23 respectively left and right eigenvectors of B(Y), (Ax)r=123
eigenvalues of B(Y), the exact solution Y*(x/t; Yz, Yr) of (18) is defined by :

Y* (x/t; YL, YR) = Y1 + Z I [[Y]]
l‘/t<>\k

O (19)
= YR — Z ( lk[[Y]]L)rk
T/t>Ap
where [[oz]]f = ar — apr. Thus, the solution written related to the conservative variable is
W* (x/t; W, Wr) =W (Y™ (¢/t; YL, YR)) . (20)

On a conservative and homogeneous framework, the numerical flux is defined by the conservative
flux computed with the approximate solution at the interface 2/t = 0. However, the Riemann

10



problem (9) provides a stationary wave at the interface, which introduces a jump of the numerical
flux across it (which appears even when the exact solution of (9) is computed).

We emphasize that the source term of topography —gZ} (z) appears naturally and explicitly in the
expression of intermediate states computed by the following schemes.

3.3 The VFRoe (Z;,h,Q) scheme

We consider first the conservative variable W = *(Z;, h, Q). Note that this solver corresponds to
the initial VFRoe scheme [22]. The main interest of this interface Riemann solver is the discrete
continuity of @ through the stationary wave, in agreement with the Riemann invariant (13a).

If we develop the system (3), we can write the convection matrix (which identifies with the jacobian
matrix of the numerical flux Fyw (W) :

Eigenvalues of the matrix B(Y') are :
AM=0, a=u—c, As=u+c.

The associated matrix of right eigenvectors is :

2 — 2 0 0
Q= —c? 1 1
0 u—c u-+te

If we refer to the exact solution (19) of the linearised Riemann problem (9), we can write :

r [ — g2
[[Zf]]L _52

52

W* (0 Wi, We) = W* (07 Wi, Wr) +

_a2 0

where @ = u(f/) and 66(17). This implies that the discharge @ is continuous through the stationary
wave, according to relation (13a). So, the scheme associated to h is conservative. By the same
way, one may write the relations to connect a state W to a state W, through the u — ¢ wave :

~ R . - R R 0
W:Wa%(cgz_f% RERII0 [[Qg]]L) !

o

u—=¢

and the relations to connect a state W to a state W, through the u + ¢ wave :

1 (e@zfﬂj PRGEI [[Q]rj) !
u+c

W=W,+

c—1u I ¢

2

11



3.4 The VFRoencv (7Z;,2¢,u) scheme

We consider herein the change of variable Y(W) = %(Z;,2c,u). The choice of variable Y was
motivated by the form of Riemann invariants associated with waves of speed u — ¢ and u + ¢
which are respectively u 4 2¢ and u — 2¢ (see (6) and (7)). Moreover, in the flat bottom case
(5), variable ?(2c, u) provides a symmetrical convection matrix and the condition to maintain a
positive intermediate sound speed is formally the same as the condition of vacuum occurence (8)
(see for more details [10] and [4]).

The system (3) may be written related to ¥ as follows :
Zpe =0

(2¢) s +u(2¢) g+ cuy =0
ur+ce(2¢) o +ut e+ 925 = 0.

Note that this system is defined only if A~ > 0 and focusing on smooth solutions. The convection
matrix B(Y) is :

o 2O
= a O

0
BY)=10
g

Eigenvalues of matrix B(Y') read :
AM=0, a=u—c, As=u+c.

If we denote by 2 the matrix of right eigenvectors, we may write :

The solution provided by the linearised Riemann problem verify through the stationary wave :

1z, (€%
Y7 (OFYE, YR) = Y7 (075, Ya) + -0k | ge
i

The relation between a state Y and a state Y, through the u — ¢ wave may be written :

—g R R [[u]]R 0
Y=Y+ (m[[zf]h + e, - 5 ) _11

and the relation to connect a state Y to a state Y through the u + ¢ wave is :

0 gy DY (]
YIYa‘i'(m[[Zf]]L"‘[[C]]L"‘ 2) }

12



One may easily note that the discharge @ computed by the VFRoencv (Z¢, 2¢, u) solver is different
on both sides of the interface. Hence, the scheme (17) is not conservative according to the equation
(3a). To avoid this problem, a new Finite Volume approximation of (3a) may be introduced :

n n At _ _
hi = hi — m((QiH/z + Q;’I—+1/2) - (Qi—1/2 + Qj—l/z)) (21)
where Qi_+1/2 and Q;’I_+1/2 refer respectively to values at the left and the right side of the interface

Zit1/2- The scheme obtained from this approximate Riemann solver is able to deal with vacuum
in the flat bottom case, according to tests provided in [4]. Moreover, some numerical results are
provided in the last section with occurence of dry area on a non trivial topography.

3.5 The VFRoencv (7;,Q,¢) scheme

This approximate Riemann solver follows the same formalism as above. We consider herein the
variable Y(W) = Y(Z;,Q,¢) (with @ = hu and ¢ = u?/2 + g(h + Z;)). However, we may
remark that this change of variable is not inversible, which may cause some problems to define the
numerical flux. The choice of YV is related to the form of the Riemann invariants associated with
the null velocity wave (13).

The system (3) written related to Y is :
Zf,t == 0
Q,t + uQ,x + h’l/),x =0
1/),t + gQ,x + U1/),x =0.

As a result, the convection matrix B(Y) is :

B(Y) =

oo O
@ a2 o
>

As above, eigenvalues of matrix B(Y) are :
AM=0, a=u—c, As=u+c.

If  is the matrix of right eigenvectors, we may write :

1 0 0
Q=10 -—c
0 g

The approximate Riemann problem to solve is the same as (18), whose solution Y*(z/t; Yz, Yr) is
defined in (19). We have the following relation through the stationary wave :

17,1,
Y*(0+;YL,YR)IY*(O_;YL,YR)—I— 0
0

13



Thus, the solution computed by this Riemann solver is in agreement with the Riemann invariants
(13a) and (13b). Hence, this approximate Riemann solver associated with the scheme (17) is able
to maintain a large class of steady states, ie those based on the Riemann invariants (13) (see
remark 4). A state Y may be connected to a state Y, through the u — ¢ wave by :

0
-1 . r __ R -
Y=Y, + (ﬁ[[@]h + C[[l/)]]L) —c
)
and a state Y 1s connected to a state Y through the u + ¢ wave by :

o

Y:}%+<%Wﬂf+5W£)

o o

Remark 2. The convection matriz B(Y') may be written in a symmetrical form, as follows :

-1

0 0 0 10 0 0 0 0
BY)=[0 « A| =10 1 0 0 u h
0 g u 0 0 h/g 0 h hu/g

Remark 3. Note that the system (10) provides a pseudo-conservative form for smooth solutions.

Thus, one could use this form to define a Finite Volume scheme from it (with the VFRoencv

(Zy,Q, %) solver for instance). However, one can easily verify that, even in the flat bottom case,

the Rankine Hugoniot relations are not equivalent. Indeed, noting v = u — o (o the shock speed),
the jump relations provided by the (real) system in the flat bottom case (5) are :

[hv] =0 (22)

hv[v] + gh[h] =0 (23)

whereas the jump relations provided by the pseudo-conservative system (10) in the flat bottom case

write :
[hv] =0 (24)
o] + ¢g[h] =0 (25)

which are not equivalent to the previous relations.

Remark 4. According to remark 1 and relations (13) (assuming that the Riemann invariants and
the Rankine Hugoniot relations identify through le LD field), one can define the following discrete
steady states :

[@" =0 (26a)
[v1." =0. (26b)
Moreover, these states strictly include steady states with u =0 :
u; =0 (27a)
[h+ 21" =0. (27b)

14



Remark 5. Steady states (26) are exactly preserved by the VFRoencv (Z;,Q, ). Moreover, all
VFRoencv schemes presented here preserve exactly steady states (27).

We turn now to the second class of methods based on the splitting method.

4 Fractional step method

We present now a new scheme, based on a fractional step method (see [24], [21] and [26]). The
system (3) is split in two parts. The first one is the conservative and homogenous system of P.D.E. :

hiy+4 (hu) =0 (28a)

h2
mm¢+<mﬂ+g5) =0. (28b)

)

The second one is the system of O.D.E. :
hy=20 (29a)
(hu)+ = —th}(x). (29b)

The effects of the source term are decoupled from the conservative system. So, a robust method
may be applied to compute the system (28) (ensuring positivity of h), and a classical method is
used to solve the O.D.E. (29).

4.1 The VFRoencv (2¢,u) scheme

To compute the (strictly) hyperbolic, conservative and homogenous system (28), we propose the
VFRoencv (2¢, u) scheme (see [10] and [4]). This system may be written in terms of non conser-
vative variable Y (W) = *(2¢,u). Hence comes :

ay ay
_|_ p—

B B(Y)a_x =0

with:

Matrix B(Y) is symmetric. The intermediate state is given by (we set here Yy = Y):

Us = U — [[c]]j (30a)
I,
Cs = C— T (30b)

15



where [[oz]]f represents ag — ay, for each interface Riemann problem. Note that the linearization
has been made around the state (2¢,u).

Vacuum arises in the intermediate state of linearized Godunov solver if and only if initial data
makes vacuum occur in the exact solution of the Riemann problem associated with the non linear
set of equations (see the condition (8)). Actually, when focusing on the solution of the Riemann
problem, vacuum may only occur when initial data is such that two rarefaction waves develop.
Riemann invariants are preserved in that case, hence u 4 2¢ (respectively u — 2¢) is constant in the
1-rarefaction wave (respectively the 2-rarefaction wave). Due to the specific form of the linearized
system written in terms of non conservative variable Y, one gets from a discrete point of view :

UR — 2CR = Us — 2¢; (31a)
ur + 2cp = us + 2c¢5. (31b)

Thus, the linearized solver is well suited to handle double rarefaction waves in the solution of the
exact Riemann problem. Hence, the discrete condition to ensure the positivity of ¢, is :

ugp —ur < 2(\/ghgr +/ghr)

which exactly identifies with the continuous condition (8).

4.2 The fractional step method

The Finite Volume scheme which computes the homogenous system (28) may be written as follows :

A

i i Az (F<VVZ*_|_%(0,VVZ’VVZ+1))

(32)
—F (W73 (0; Wi, W) )
where VV;-% (z/t; Wi, Wit1) is the solution of the Riemann problem at the interface ;1 L, approx-

imated by the VFRoencv (2c, u) solver.

The system of O.D.E. (29) is approximated by an explicit Euler method for the time part, and by
a centered discretisation for the space part :

1
hptt =t

Qi = Q“% AL gh“% Zrig1 — Lgi1 . (33)
7 7 Al‘Z 7 9

Note that the property of the VFRoencv (2¢, u) scheme concerning the occurence of vacuum is not
modified by step (33). Some numerical results with dry area provided in the following confirm the
good behaviour of the fractional step method over vacuum.

Note that neither steady states (26) nor steady states (27) are maintained by the whole algorithm.
This phenomenon is well known and will be discussed in the following, based on some numerical
experiments, to emphasize that the algorithm is able to converge towards steady states.
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Remark 6. In the flat bottom case, the fractional step method (32)-(33) and the VFRoencv
(Zs,2¢,u) scheme presented before provide the same algorithm.

Remark 7. The two steps may be recast in one single step form, as follows :

h?+1 — hf _ At (Q:‘_I_% _ Q:'F_l)

Azx; 2
At At Zpig1— Zpi
ntl _ n _ 2 279\ _ 2 2 19)* _ n+1 fitl fizl
QG =0 - ((he? + gh?/2);, ) — (hu? + gh?/2)7_, ) X 90 ( : )
where ( ):.‘_I_l denotes the variable computed by the VFRoencv (2¢,u) scheme at the interface Tiyi

5 A higher order extension

All schemes previously presented are derived from “first order” methods. We introduce in this
section an extension to obtain more accurate results and to increase rate of convergence (related
to the mesh size). This method is based on a linear reconstruction on each cell by the method
introduced by B. Van Leer in [25], namely MUSCL (Monotonic Upwind Schemes for Conservation
Laws). This formalism is usually applied in a conservative and homogenous framework (see [11] for
numerical measures with some VFRoencv schemes on Euler system, with non smooth solutions).
However, the source term of topography deeply modifies the structure of the solutions.

When applied to the shallow-water equations on a flat bottom, the MUSCL method would limit
the slope of variables h and u for instance. However, the source term of topography must be taken
into account. Indeed, refering to a steady state such that h + Z; = C**® and u = 0, a classical
MUSCL reconstruction breaks the balance of the state. Since a general class of steady states are
defined by @ and ¢ constant (see remark 4), one may require that the reconstruction does not
modify these states. Moreover, the method must be able to deal with vacuum. We present here a
slope limiter which verifies these requirements.

For a sake of simplicity, all variables used in this section are supposed to be time-independant.
Indeed, the MUSCL method is applied at each time step, ie ¢ is locally fixed to " at the n'" time
step. Moreover, though this MUSCL method may be computed on irregular meshes, we restrict
this presentation to constant space step Ax.

Some notations are first introduced. Let {a;};ez a variable, constant on each cell, where a cell is
Ii = [ei_1/2; ig1/2). Let ;= (254172 + 2i-1/2)/2 and J;(a) the (constant) slope associated to o
on the cell I;. Let a!i”(z), = € I;, the function defined on I; by :

ozﬁ»m(x) = oy — 0 — ;) x € I;.

Thus, to compute numerical flux at an interface x; 4,2, the initial data become aﬁ»i”(xi_l_l/z) and
aﬁ»ifl(xi_l_l/z) of the local Riemann problem instead of a; and ;1. This step is the same as in the
classical framework.

The modification of the algorithm to take into account the topography is thus restricted to the
choice of variables for which the MUSCL reconstruction is applied to and to the computation of
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the slope ;. The first variable is the momentum @. A classical minmod slope limiter is used (see
for instance [19]) :

5:(Q) = {5i+1/2(Q) min(|Qit1 — Qil, |Qi — Qi—al)/ Az if 5;_1/2(Q) = si41/2(Q), (34)

0 else,

sig1/2(a) = sign (@ip1 — ;).
Such a slope limiter is TVD (Total Variation Diminishing) in the following sense :

Property 1. Let @ an open subset of R (here § =R ).
Let us define the total variation of a function v € L}, _(Q) :

loc
ol = p{/ v div g dr, ¢ € CHQ), |0l < 1}.
Q

If v°*t and V""" are the functions which respectively represent the constant and linear piecewise
approrimations of v :

v (z) =v; i€ Z such that x € I,

o' () = 0l i € Z such that x € I,

then v'*? defined by the minmod slope limiter verifies :

197 < Jlve]]- (35)

The linear reconstruction on ) based on (34) verifies property 1.

As mentionned above, stationary states must be preserved by the method, in order to permit
convergence in time to steady states. To satisfy this requirement, one may choose to apply the
reconstruction on ¥ and to verify the property 1 for ¢». However, the change of variable from
(h, Q) to (@, ) is not inversible. Thus, the slope limitation is made on the water height, but the
computation of the slope J; (k) is modified to take into account . Let us first define :

siv1/2(h+ Z5) min( hi, if 51 /2(h + Z)
[(h+ Z¢)iv1 — (R + Z¢)il, = siq1/2(h + Zf)
|(h+ Z¢)i — (h+ Zp)i-1] )/Al‘

0 else.

i (h) = (36)

The term h; in the minimum enables the method to deal with vacuum. The profile of 4 does not
appear in the computation of §;(h) (though v and g(h + Z¢) identify when v = 0). Hence, when
the source term is locally non null (ie Zf;—1 # Zj; or Zy; # Zgit1), 6;(h) must be modified,
according to values of 1;_1, ¥; and ;1. Since the slope limiters are based on a TVD requirement
for the linear reconstruction, we impose a TVD-like condition on ¢, for the computation of 6;(h).
Let ¥ be the function :
QZ
V(75 Q) = 5o +9(h+ Zy).
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All methods presented in this paper use the following values, Vi € 7Z :
_ Az Az
v = \P(Zfz’,hi - 52'(]1)7,@ - 52’(@)7),
U, = \I’(ZfiahiaQi) (= i),
Ax)

Az
UH = \P(Zfiahi +5i(h)T’Qi+5i(Q)T :

Following these notations, W¥; is the value of ¥ at the center of each cell I;, ¥; is the value of ¥
at the right of each interface x;_,/5 and \I!Z'" is the value of W at the left of each interface x;14/9,
i € Z. The computation of numerical flux at an interface x; /5 needs \I!;" and ¥, ,. Following
notations previously introduced, let ZJ?”, he*t and Q°*! be the piecewise constant approximations
and let Z}m, A" and Q""" be the piecewise linear approximations. Thus, one can easily verify
that ||\I!(Z}m, R Q'] is not less or equal to [[W (2§, he*t, Q°")||. Hence, the reconstructions
(34) and (36) do not imply that ¥ verifies property 1. An idea to solve this problem should
be limiting “strongly” h (ie computing J;(h) = 0) if \I!(Z}m,h“”, Q") does not verify the TVD
requirement. However, this condition may be considered too restrictive. Thus, we introduce the

following condition :

0 <0 =0 | < W — Wa]/2,
(37)
0 < Of — W] < W4 — W]/2,

illustrated by figure 2.

"1

X1 Xi.12 X Xis1/2 X1

Figure 2: a TVD-like reconstruction for ¥

Condition (37) imposes a TVD-like condition on ¥. Indeed, assuming that ¥;, ¥; and \I!;" fulfill
condition (37) Vi € Z, if ® denotes the linear interpolation computed from ¥;, ¥; and \I!;" Vi e Z,
then @ verifies the following TVD property :

@] < [[w(Z5, he, Q)]
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which may be seen as the counterpart of (35).

We recall now all the steps of the algorithm used to compute slopes (k) and 6;(Q), Vi € Z :

1. Computation of 6;(Q) :

5 (Q) = $i41/2(Q) min(|Qiy1 — Qil, Qi — Qi—1l) /Azx if 5;,_1/2(Q) = 5i31/2(Q),
! 0 else.
2. Computation of &;(h) :
o if Zy;_1 = Z¢; = Zpiy1, then the minmod slope limiter is applied to compute J;(R) :

5:(h) = {8i+1/2(h) min(|hi+1 — hil, |h; — hi—1|)/Al‘ if s;_1/2(h) = si41/2(h),

0 else,
e else, §;(h) is first computed by a classical minmod limiter on h + Z; :

sip1/a(h+ Zf)min( hi, if 51 /2(h + Z)
[(h+ Z¢)iv1 — (R + Z¢)il, = siy1/2(h + Zf),
|(h+ Z¢)i — (h+ Zp)i-1] )/Al‘

0 else,

5i(h) =

e but if condition (37) is not fulfilled, then we reset d;(h) to

5:(h) = 0.

Let us emphasize that, when &;(h) is set to 0, conditions (37) may not be verified (because of the
limitation on @).

Some numerical results are described in the following and point out the good behaviour of the slope
limiter obtained. This slope limiter is combined with a second order Runge-Kutta integration wrt
time.

6 Numerical results

Though several VFRoencv schemes have been previously discussed, only numerical results per-
formed by the VFRoencv (Z¢, 2¢, u) scheme with the higher order extension and by the fractional
step method are presented here (some complementary tests are provided in appendix). Some ex-
periments tested herein come from a workshop on dam-break wave simulation [15]. Most of them
deal with steady states on non trivial bottom. The ability of the methods to compute dry area
1s tested too. Let us emphasize that all the numerical results have been obtained without any
“clipping” treatment (ie non-physical values like negative water height are not artificially set to 0).
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The first four tests are performed with the same topography. The channel length is [ = 25m. The
bottom Z; is defined as follows :

1,2—1,15(x — 10)? if8m <z < 12m,
Zf(l‘)—{

0 else.

Only initial and boundary conditions are modified.
All tests cases are computed with a C'F'L number set to 0,4.

6.1 Flow at rest

The initial condition of this test case is a flow at rest. Thus, numerically, it fulfills conditions
(27), where h > 0. Since we compute a flow at rest, we impose h + Z; = max(Z;;0,15) m and
Q = 0m?/s all along the mesh, which is composed by 300 nodes. As expected, the VFRoencv

0.25 0.010
— VFRoencv —— VFRoencv
—————— FSM o FSM
0.20 1 :
A 0.005 |- : 1
015 —~ i
0.000
010 | 1
-0.005 - i 1
005 | 1 /
0.00 ‘ ‘ -0.010 ‘ ‘
0 10 20 0 10 20
Figure 3: Flow at rest : water height Figure 4: Flow at rest : discharge

scheme exactly preserves the steady state (figures 3 and 4). Moreover, though it is not plotted
here, we may emphasize that the behaviour of this scheme stays as good as in this case when the
initial conditions are h 4+ Z¢ = 0,5m (no dry cells) or o = 0m (no water). The fractional step
method (FSM) does not maintain h+ Z; and () constant on the wet cells. The slope of topography
introduces a convection of water. The fractional step method nonetheless converges towards the
right solution when the mesh 1s refined.

The interest of the next three tests (extracted from [15]) is to study the convergence of this scheme
towards a steady state. All these tests are performed on 300 cells. The boundary conditions are a
positive imposed discharge @;,, on the left bound, and a imposed height %4, on the right bound
(except in the case of a supercritical flow). The initial condition is set to A = Ay and @ = 0.
All results are plotted at Thyrax = 200s (and CFL = 0,4). To discuss results, several profiles are
plotted, namely A, (), and ¢. Moreover, to illustrate the quantitative convergence of the methods,

21



the normalised time variation in L?-norm is plotted too (see figure 6 for instance) : time ¢ in

. [|R" 1 =h"]|, 2 .
seconds for z-axis and In RGeS for y-axis.

6.2 Subcritical flow over a bump

Here, the boundary conditions are h,u; = 2m and @y, = 4,42m?/s. The two solutions provided
by the VFRoencv scheme and the fractional step method seem very close to each other, according
to figure 5 (they are in agreement with the analytic solution). However, figures 7 and 8 focus on

3.0 0.0
— VFRoencv )
—————— Y
-5.0
2.0
-10.0
10 8
-15.0
0.0 : : -200 ‘ : ‘
0 10 20 0 50 100 150 200
Figure 5: Subcritical flow : water height Figure 6: Subcritical flow : normalised time vari-

ation in L%-norm

some differences between the two methods : whereas () and ¢ seem to be constant in the case
of the VFRoencv scheme, the fractional step method makes occur oscillations near variations of
topography. The two profiles on figure 6 are superposed, and show that the two methods converge
to steady state.

6.3 Transcritical flow over a bump

The boundary conditions are Q;, = 1,53 m?/s and h,y; = 0,66 m. The analytic solution of this
test is smooth, with a decreasing part, beginning at the top of the bump, with a critical (sonic)
point on the decreasing part of h. Figure 9 shows that results provided by the VFRoencv scheme
and the fractional step method are similar and the critical point implies no problem (though
methods are based on approximate Godunov schemes). According to figure 10, the time variation
of the VFRoencv scheme decreases more slowly than the one of the FSM. On figures 11 and 12,
one may remark that results performed by the VFRoencv scheme are more accurate, since ) and
1 seem almost constant.
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Figure 7: Subcritical flow : discharge

Figure 9: Transcritical flow : water height
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Figure 8: Subcritical flow : 1
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154 11.20

— VFRoencv —— VFRoencv
rrrrrr FSM o FSM
1.53
152} ' 1 11101 I 1
151 1
1.50 ‘ ‘ 11.00 ‘ :
0 10 20 0 10 20
Figure 11: Transcritical flow : discharge Figure 12: Transcritical flow : ¢

6.4 Drain on a non flat bottom

The topography of this test case is the same as all cases previously presented. The left boundary
condition is a “mirror state”-type condition, and the right boundary condition is an outlet condition
on a dry bed [5]. The initial condition is set to h + Z; = 0,5m and @ = 0m*/s. The solution of

0.0

-10.0

-15.0 .
0 500 1000

Figure 13: Drain on a non flat bottom : water Figure 14: Drain on a non flat bottom : nor-
height malised time variation in L%-norm

this test case at ¢ = 400 is a state at rest on the left part of top of the bump with h 4+ 7 = 0,2m
and @ = 0m?/s and a dry state (ie h = 0m and @ = 0m?/s) on the right side of the bump.
Results are presented at several times : ¢ = 0, 10, 20, 100 and 1000 s on figures 13, 15 and 16. Note
that, since a dry zone is expected at the downstream side of the bump, variable 4 is not defined
in this zone (thus, results plotted on figure 16 in this zone must not be taken in account). Figure
13 represents the water height computed by the VFRoencv scheme (“plus”) and the fractional
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Figure 15: Drain on a non flat bottom : dis- Figure 16: Drain on a non flat bottom : 7
charge

step method (“circle”). Results at intermediate times are slightly different, but denote the same
behaviour. However, if the final time Ths4x 18 increased, the fractional step method computes, at
the left of the bump, a level of water slightly lower than the level expected, namely h4+7; = 0,2m.
This numerical phenomenon has already been pointed out by A.Y. LeRoux [18]. Tt is due to the
non preservation of discrete steady states (27) by the fractional step method. Note however that,
when the mesh is refined, the level computed tends to h 4+ Z; = 0,2m. Results performed by the
VFRoencv scheme are good, the expected steady state is well approximated, as shown on figures
13, 15 and 16. Furthermore, the time variation is decreasing for both methods.

6.5 Vacuum occurence by a double rarefaction wave over a step

This numerical test is different from previous tests. Indeed, we do not study here the convergence
towards a steady state but the ability of the numerical scheme to compute vacuum (ie dry bed).
Moreover, the topography is not smooth (which indeed is not in agreement with initial assump-
tions). This test is based on a test proposed by E.F. Toro [15], but we introduce here a non trivial
topography : Zy = 1m if 25/3m < & < 12,5m, and Z; = 0 m otherwise (the total length is still
25m). The initial water height is initialised to 10 m and the initial discharge is set to —350 m?/s
if # < 50/3m and to 350 m?/s otherwise. Several times are presented : 0s, 0,055, 0,255, 0,45 s
and 0,65 s. In the case of a flat bottom, the solution would be composed by two rarefaction waves,
with a dry zone occuring between the two waves. Here, since the the topography is not flat, the
two algorithms introduce waves, located on the jumps of topography (see figures 17 and 18, where
sign “plus” represents the VFRoencv scheme and the sign “circle” represents the fractional step
method). Moreover, one may note that results computed by the two methods are close to each
other, but more diffusive for the FSM method (since no MUSCL reconstruction has been performed
for this algorithm).
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Figure 17: Vacuum occurence over a step : water Figure 18: Vacuum occurence over a step : dis-
height charge

7 Conclusion

Some Finite Volume schemes have been studied in this paper to compute shallow-water equations
with topography. Some relations of the system have been recalled, in the case of a piecewise
constant function to approximate the topography. So, according to this approximation, several
Finite Volume schemes have been introduced, based on the VFRoencv formalism [5], [11], namely
the VFRoencv schemes, in variable (Z¢, h, @), (Z¢,2¢c,u) and (Z;,Q, ¢). All the previous schemes
are able to maintain steady states with v = 0 and the latter one can preserve a larger class of
steady states. Moreover, a fractional step method based on the VFRoencv (2¢, u) scheme (initially
proposed in [4]) is presented. A higher order extension is also exposed, based on the minmod slope
limiter, which takes into account steady states.

Numerical tests are performed with the VFRoencv (Z¢, 2¢, u) scheme (with the higher order ex-
tension in space and a second order Runge-Kutta time integration) and the “first order” fractional
step method (other tests are provided in appendix). Most of the test cases, extracted from [15],
simulate the convergence in time to a steady states. The numerical schemes provide as accurate re-
sults as most of schemes tested in [15], without any significant difference between the two schemes
(except for some steady states which are not strictly preserved by the fractional step method).
Moreover, occurence of vacuum (dry area) on non trivial topography is also tested. The good be-
haviour of the two methods may be noted too in these cases, though no “clipping” treatment has
been performed (ie no non-conservative treatment of negative water heights has been computed).

Considering results performed by the Well-Balanced scheme, the accuracy expected is shown on
some tests. This scheme has been compared with the VFRoencv (Z¢, 2¢, u) scheme and numerical
results confirm the good behaviour of the latter scheme. However, the Well-Balanced scheme is
(several times) more expensive than a usual Godunov method, since the resolution of the Riemann
problem is not obvious and many configurations must be considered (this essential difficulty is due
to the stationary wave). Indeed, the CPU time required by the higher order VFRoencv (Z;, 2¢, u)
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scheme i1s between 10 and 100 times lower than the CPU time required by the “first” order Well-
Balanced scheme.

We have presented too the VFRoe scheme (in variable (Z;, h, Q)), with some results provided in
appendix. The behaviour of this scheme is as good as the VFRoencv (Z;, 2¢, u) scheme. However,
contrary to the VFRoencv (Z;, 2¢, u) scheme, this method fails to deal with occurence of a critical
point, provided by an upstream boundary condition. Such a drawback has been emphasized too
with the R.J. LeVeque scheme [20].

An interesting extension of the method presented here is to take into account a variable section
S(z, h) in the one-dimensional framework. The same technique may be used to approximate the
corresponding source term.
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A Comparison with the Well-Balanced scheme

This appendix is devoted to the numerical comparison of the VFRoencv Z;, 2¢, u) scheme with
the Well-Balanced scheme presented in [18]. Note that the VFRoencv scheme is computed with
the higher order extension and a second order Runge-Kutta method whereas the Well-Balanced
scheme tested is the original “first” order scheme. Two tests are presented : a subcritical flow over
a bump and a trancritical flow over a bump. The same topography is used for both tests :

1,2—1,15(x - 10)* if8m< =z < 12m,

Zs(x) =
0 else.

Moreover, all results are plotted at Tayax = 200s. The C'F'L number is set to 0,4. Computations

are performed on a mesh with 300 nodes. Only initial and boundary conditions differ between the

two following tests.

A.1 Subcritical flow over a bump

This test computes a transient flow, which tends to become a steady subcritical flow (see test 6.2).
The imposed boundary conditions are ;,, = 4,42 m2/5 and hyyr = 2m. The initial conditions are
Q(t = 0,2) = 0m?/s and h(t = 0,2) = houe m. Figure 19 represents the water height. Results
performed by the two schemes are very close to each other. The normalised variation is plotted
on figure 20. The z-axis is the time and the y-axis is In Hﬁ;:i%”f One can remark that the
two profiles are similar and both methods provide a stationary résult. This confirms the good
behaviour of the VFRoencv scheme. Figures 21 and 22 present @ and ¢¥. Whereas figure 21 shows
that the two methods provide almost the same result, one can denote that the two profiles are
slightly different. The analytic solution is ¢y = 22,04205. The slightly different value provided by
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the Well-Balanced scheme is due to iterative methods (Newton, dichotomy, ..

.) used to compute the

exact solution of each interface Riemann problem. Indeed, these methods stop when the relative
error is 107 or when the number of iterations is larger than 500.

A.2 Transcritical flow over a bump

The solution of this test case is a regular profile for the water height, with a subcritical flow

upstream of the bump and a

— VFRoencv
- \Well-Balanced scheme

1.0

0.5

0.0 :

0 10

Figure 23: Transcritical flow :

water height

supercritical flow downstream of the bump (see test 6.3).
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boundary conditions are @Q;, = 1,53m?/s and hyyt = 0,66 m. The initial conditions are Q(t =
0,2) = 0m?/s and h(t = 0,2) = hym. Both profiles plotted on figure 23 provide a good
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approximation of the expected steady solution. Moreover, figure 24 shows that the two schemes
compute almost stationary solutions at ¢ = Thy4x. Figure 25 shows that variable @) is accurately
computed by both methods. Moreover, figure 26, which represents variable i, denotes a slight
difference between the two methods, as 1t has already been noticed in the previous test case.

This appendix confirms the good behaviour of the VFRoencv (Zy, 2¢, u) scheme. Indeed, results
provided by this method with the higher order extension are very close to those provided by the
Well-Balanced scheme for the two presented test cases. Moreover, the CPU time required by
the VFRoencv scheme (with a second order Runge-Kutta time integration and the higher order
extension) is between 10 and 100 times lower than the CPU time required by the “first” order Well-
Balanced scheme (no accurate CPU measurement might be done, because different computers and
different languages have been used to program the methods ; no optimization has been searched for
the Well-Balanced scheme ; the accuracy and the CPU time of the Well-Balanced scheme deeply
depends on the achieves convergence of iterative methods in the exact interface Riemann solver).

B Comparison with the VFRoe (Z;, h, () scheme

We present here a numerical test performed with the VFRoe (Z;, h, Q) scheme, with the higher
order extension previously presented and a second order Runge-Kutta time approximation. The
test case performed is the subcritical flow over a bump (see test 6.2). Let us recall the configuration
of this test. The topography is :

1,2—1,15(x — 10)? if8m <z < 12m,
Zf(l‘)z{

0 else.
The boundary conditions are @;, = 4,42 m2/5 and h,u: = 2m. The 1nitial conditions are
3.0 0.0
—— VFRoencv
""" VFRoe
-5.0
2.0
-10.0
10 1
-15.0
0.0 * * -20.0 * ] *
0 10 20 0 50 100 150 200
Figure 27: Subcritical flow : water height Figure 28: Subcritical flow : normalised time

variation in LZ-norm

Q(t = 0,z) = 0m?/s and h(t = 0,2) = 2m. The mesh is composed of 300 cells and the CFL
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number is 0, 4. Both methods provide profiles of water height which are very close to each other in

4.42010 22.0424
—— VFRoencv
""" VFRoe — VFRoencv
—————— VFRoe
442005} 8
22,0422 8
442000 """ g
22.0420 8
4.41995} 8
4.41990 * ! 22.0418 * !
0 10 20 0 10 20
Figure 29: Subcritical flow : discharge Figure 30: Subcritical flow : 9

figure 27. Moreover, the time variation decreases with the same slope on figure 28. Figures 29 and
30 show that the VFRoe scheme and the VFRoencv scheme both compute almost constant values
of @ and ¢, in agreement with the analytic solution (the relative error in L>-norm is around 10°.
Thus, the VFRoe scheme provide too accurate results on this test case. As the high-resolution
Godunov method proposed by R.J. LeVeque in [20], the VFRoe scheme fails to deal with occurence
of transcritical flow by an inlet condition (see test 6.3), even with the higher order extension.
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