Goal-oriented error estimation for parameter-dependent nonlinear problems

Alexandre Janon 1, 2, 3 Maëlle Nodet 4 Christophe Prieur 5 Clémentine Prieur 4
4 AIRSEA - Mathematics and computing applied to oceanic and atmospheric flows
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, UJF - Université Joseph Fourier - Grenoble 1, INPG - Institut National Polytechnique de Grenoble
5 GIPSA-SYSCO - SYSCO
GIPSA-DA - Département Automatique
Abstract : The main result of this paper gives a numerically efficient method to bound the error that is made when approximating the output of a nonlinear problem depending on a unknown parameter (described by a probability distribution). The class of nonlinear problems under consideration includes high-dimensional nonlinear problems with a nonlinear output function. A goal-oriented probabilistic bound is computed by considering two phases. An offline phase dedicated to the computation of a reduced model during which the full nonlinear problem needs to be solved only a small number of times. The second phase is an online phase which approximates the output. This approach is applied to a toy model and to a nonlinear partial differential equation, more precisely the Burgers equation with unknown initial condition given by two probabilistic parameters. The savings in computational cost are evaluated and presented.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, In press, 〈10.1051/m2an/2018003〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01290887
Contributeur : Alexandre Janon <>
Soumis le : vendredi 18 mars 2016 - 19:12:32
Dernière modification le : mercredi 30 mai 2018 - 01:11:17
Document(s) archivé(s) le : dimanche 19 juin 2016 - 23:33:14

Fichiers

GONL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Alexandre Janon, Maëlle Nodet, Christophe Prieur, Clémentine Prieur. Goal-oriented error estimation for parameter-dependent nonlinear problems . ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, In press, 〈10.1051/m2an/2018003〉. 〈hal-01290887〉

Partager

Métriques

Consultations de la notice

926

Téléchargements de fichiers

162