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Abstract. In structural and functional MRI studies there is a need for robust and 
accurate automatic segmentation of various brain structures. We present a com-
parison study of three automatic segmentation methods based on the new T1-
weighted MR sequence called MP2RAGE, which has superior soft tissue con-
trast. Automatic segmentations of the thalamus and hippocampus are compared 
to manual segmentations. In addition, we qualitatively evaluate the segmenta-
tions when warped to co-registered maps of the fractional anisotropy (FA) of 
water diffusion. Compared to manual segmentation, the best results were ob-
tained with a patch-based segmentation method (volBrain) using a library of 
images from the same scanner (local), followed by volBrain using an external 
library (external), FSL and Freesurfer. The qualitative evaluation showed that 
volBrain local and volBrain external produced almost no segmentation errors 
when overlaid on FA maps, while both FSL and Freesurfer segmentations were 
found to overlap with white matter tracts. These results underline the im-
portance of applying accurate and robust segmentation methods and demon-
strate the superiority of patch-based methods over more conventional methods. 

Keywords: Patch-based segmentation, MRI, volBrain, Freesurfer, FSL, 
MP2RAGE 

1 Introduction 

The extensive use of imaging techniques to investigate brain diseases and the need 
to outline specific region of interests (ROIs) for quantitative analysis emphasize the 
importance of accurate and robust segmentation methods. Accurate tracing of deep 
brain structures, such as the thalamus and hippocampus, requires a high degree of 
expertise and preferably standardized outlining protocols. Even though an acceptable 
intra- and inter-rater reliability can be achieved using standardized protocols [1], 



manual segmentation is very time consuming. In large datasets, segmentation can 
become a bottleneck in post-processing and data analysis. Moreover, manual region 
outlining is prone to inconsistencies. Automatic or semi-automatic segmentation 
methods have the potential to solve these issues. 

Several software solutions for automatic segmentation are publicly available. Func-
tional MRI of the Brain (FMRIB) Software Library (FSL) and Freesurfer are tools 
frequently used for segmentation and appear to be reasonably reliable [2, 3]. Howev-
er, there are still a potential to improve the automatic segmentation methods, especial-
ly in longitudinal studies [4] and for diseases that cause small structural changes. 

Novel segmentation methods utilize redundancy in images to exploit a representa-
tive image library with corresponding validated structure labels [5-7]. These methods 
are called non-local means patch-based segmentation (NLM-PBS), since similar im-
age patches are searched for in a non-local fashion, i.e. spatially located in a neigh-
borhood around the target structure. NLM-PBS has been shown to be superior to con-
ventional atlas-based techniques and even to other library-based methods [5, 6]. State-
of-the-art segmentation methods like NLM-PBS have been shown to perform well 
even in a longitudinal setting [8]. 

An MRI sequence that has become widely used to obtain T1-weighted (T1w) ana-
tomical images with good grey matter (GM) / white matter (WM) contrast is the mag-
netization-prepared rapid gradient-echo sequence (MPRAGE). However, at high stat-
ic field strengths, increasing B1 field inhomogeneity leads to high intensity variations 
across the image. To mitigate this bias field, an improved MPRAGE sequence was 
recently proposed. By acquiring two MPRAGE images at different inversion times, 
this so-called MP2RAGE sequence is less influenced by B1 as well as M0 and T2* 
[9]. The resulting T1w image contrast is improved, but is also different from conven-
tional MPRAGE images. Thus, current segmentation methods are not performing well 
on this new sequence [10].  

To the best of our knowledge, the accuracy of different automated segmentation 
methods has not been compared using MP2RAGE images. Furthermore, NLM-PBS 
has not yet been directly compared to more conventional methods. In this study, we 
compared the performance of NLM-PBS (with two different libraries) to two widely 
used methods (Freesurfer and FSL) using manual segmentation as the gold standard. 
We measured the segmentation accuracy on two deep brain structures, thalamus and 
hippocampus, imaged with MP2RAGE. 

2 Methods 

2.1 Participants, MRI acquisition and pre-processing 

For this study we collected 22 healthy subjects (age range 19-40 years, 12 females) 
from another internal research project. MP2RAGE images were obtained as part of 
the study protocol in all subjects, and 10 subjects were additionally examined with 
diffusion weighted imaging (DWI) as approved by the Regional Ethics Committee  

All subjects were scanned on a Siemens Magnetom Skyra 3T MRI system with a 
32 channel head coil. MP2RAGE parameters were TR=5 s, TI1=0.7 s, TI2=2.5 s, 



α1=4°, α2=5° reconstructed at isotropic 1 mm3 resolution (acquisition matrix: 
240x256, 176 sagittal slices). The final MP2RAGE images were reconstructed by 
combining the two inversion times as described in [9]. DWI was acquired with 32 
directions and 5 B0 maps. Parameters were TR=10.9 s, TI=2.1 s, reconstructed at 
isotropic 2.3 mm3 resolution (acquisition matrix: 96x96, 38 axial slices). 

MP2RAGE images have amplified background noise due to the reconstruction 
process. In our experience, Freesurfer and FSL perform poorly with this artificially 
amplified background noise, thus we masked out the background noise prior to apply-
ing the segmentation methods. Diffusion images were preprocessed using ExploreDTI 
[11]. We applied eddy current correction, motion correction and distortion correction 
before calculation of fractional anisotropy (FA) maps and co-registration to the 
MP2RAGE images. Using the inverse transformation, manual and automatic segmen-
tation masks were then warped to DWI space and overlaid the FA maps. 

2.2 Manual segmentation 

The thalamus and hippocampus from the 22 MP2RAGE images were manually 
segmented by an experienced neuroradiologist (EN) and a trained assistant (TA) using 
ITK-SNAP (www.itk-snap.org) [12]. First, EN manually traced the thalami in the 
axial plane using anatomical landmarks. Then, both EN and TA adjusted the thalami 
in all three principal planes using the protocol outlined by Power et al. [13]. The hip-
pocampi were outlined according to the EADC-ADNI segmentation protocol [1] by 
TA supervised by EN. All segmentations were performed in MNI space to have simi-
lar orientation and make consistent decisions according to the protocols. The final 
segmentations were transformed back to scanner native space for comparison. 

2.3 Automatic segmentation methods 

We used a publicly available implementation (volBrain) of NLM-PBS [5]. For 
comparison we selected the publicly available and widely used segmentation tools 
FSL and Freesurfer. Default settings were used for all pipelines except for the added 
noise removal as described above. The following provides a brief overview of the 
three segmentation methods along with the applied settings. 

FSL: Images were processed using FMRIB’s Integrated Registration & Segmenta-
tion Tool (FIRST) from FSL v5.0, a tool to segment subcortical structures [14]. 
FIRST is a model-based segmentation tool, which uses training data from 317 manu-
ally segmented images. The manual labels are parameterized as surface meshes and 
modelled as a point distribution model. The deformable surfaces are then used to 
automatically parameterize the volumetric labels in terms of meshes and are con-
strained to preserve vertex correspondence across the training data. In addition, nor-
malized intensities along the surface normals are sampled and modeled. We omitted 
the bias field correction step as MP2RAGE images are minimally affected by B1 field 
inhomogeneity. We used the default settings of FIRST, as they have been empirically 
optimized and include shape and boundary correction. 



Freesurfer: Images were processed with Freesurfer version 5.3 [15]. Briefly, the 
processing includes removal of non-brain tissue, spatial normalization, segmentation 
of the subcortical WM and deep GM structures, and intensity normalization. The 
segmentation maps are created using spatial intensity gradients across tissue classes 
and are therefore not simply reliant on absolute signal intensity. Therefore, both in-
tensity and continuity information are being carried out in this segmentation method. 

volBrain: The volBrain system (www.volbrain.upv.es) is based on an advanced 
pipeline providing automatic segmentations of several brain structures from T1w 
MRI. Images are denoised using an adaptive non-local means filter [16], registered to 
MNI space using ANTS [17], inhomogeneity corrected using SPM8 routines [18], and 
intensity normalized. Then, thalamus, hippocampus and six other subcortical struc-
tures are segmented using and updated version of NLM-PBS [5]. We tested the seg-
mentation method using two different libraries: 1) the default volBrain library (exter-
nal) of 50 conventional T1w images (MPRAGE and SPGR), and 2) our own manually 
segmented library of 22 MP2RAGE images in a leave-one-out fashion (local). In both 
cases, the images were flipped across the mid-sagittal plane to artificially increase the 
library size as done in related work [6]. 

For all segmentation methods, error logs were recorded, and quality was visually 
inspected with ITK-SNAP, overlaying the segmentations onto the T1w image. 

2.4 Comparison metrics 

The segmentations obtained from the four automatic methods were compared to 
the manual segmentations using Dice similarity index (DSI) given by 2|𝐴∩𝐵||𝐴|+|𝐵|, where A 
is the set of voxels in the proposed segmentation and B is the set of voxels in the ref-
erence (manual) segmentation and |∙| is the cardinality. DSI ranges from zero to one 
where one indicates a perfect match. Furthermore, the false positive and false nega-
tive rate (FPR, FNR) of the automatic segmentations were calculated. 

3 Results 

Fig.1 shows examples of manual segmentations and the corresponding automatic 
segmentations of the thalamus and hippocampus generated by the four evaluated 
methods overlaid on the T1w image and the FA map. As the examples illustrate, the 
thalamus is over-segmented by Freesurfer and to a lesser extent by FSL. As can be 
seen from the FA map, the internal capsule is partly included in the segmentation. 
volBrain local does not include any WM tracts, while volBrain external slightly over-
segments the thalamus. This observation is reflected in the significantly larger FPRs 
of FSL and Freesurfer compared to volBrain using both libraries (Fig.2). The con-
sistent over-segmentation of FSL results in relatively few false negatives, while Free-
surfer also suffers from a relatively large FNR. In general, volBrain local performs 
best on thalamus segmentation with very high DSI (0.913±0.014) followed by 
volBrain external (0.868±0.024), FSL (0.806±0.034) and Freesurfer (0.798±0.049). 
 



 
Best volBrain local (thalamus DSI=0.929, hippocampus DSI=0.911): 

 

 

 

 
Worst volBrain local (thalamus DSI=0.882, hippocampus DSI=0.885): 

 

 

 

 
Fig.1.Examples of manual and automatic segmentations of thalamus and hippocam-
pus overlaid MP2RAGE and FA images. Examples are selected as respectively the 
best and worst volBrain local cases. From left to right: manual, volBrain local, 
volBrain external, FSL, Freesurfer. 



In terms of segmentation accuracy, the hippocampus follows a similar pattern with 
high DSI for volBrain local (0.892±0.016), followed by volBrain external 
(0.859±0.014), FSL (0.808±0.017), and Freesurfer (0.771±0.022) (Fig.2). In terms of 
FPR and FNR, the pattern for hippocampus is slightly different from that of thalamus. 
FPR is reflecting the same order as DSI, with volBrain local performing best 
(8.9%±2.7%) and Freesurfer performing worst (41.2%±7.2%). However, in terms of 
FNR the methods are very similar with a relatively short range (mean FNR: 5.2% - 
12.4%). The consistent over-segmentation of FSL and Freesurfer naturally leads to 
relatively low FNRs. volBrain local is the only method with well-balanced FPR and 
FNR for hippocampus, while volBrain using both libraries demonstrate balanced 
over- and under-segmentations on thalamus. 

 

 

 
Fig.2. Dice overlap, false positive rate and false negative rate for segmentations of the thalamus 
and the hippocampus using the four methods under evaluation. Box lines indicate 1st quartile, 
median, and 3rd quartile. Whiskers indicate extreme values, which are within the range of two 
times the length of the box. Dots are values outside this range. 

4 Discussion 

In this study we evaluated the performance of a recent patch-based segmentation 
method [5] and compared the results to those of FSL and Freesurfer, two widely ap-
plied methods in the neuroimaging community. Using MP2RAGE, a recently pro-
posed T1w MRI sequence with superior soft tissue contrast, we tested the algorithms 
on two often investigated deep brain structures, the hippocampus and the thalamus. 
The results demonstrated that the patch-based method outperforms both Freesurfer 
and FSL on these structures. 



The accuracies we obtained on MP2RAGE images are similar to previously report-
ed accuracies on the hippocampus using conventional MPRAGE [5, 7, 19]. For thal-
amus, average accuracies are in the same range as hippocampal accuracies for all four 
methods. However, for FSL and Freesurfer thalamic segmentation accuracies varied 
more than for hippocampus (Fig.2). This may be caused by the fuzzy boundary of the 
thalamus where the image texture is important for making segmentation decisions, not 
just the image intensity and gradient. Patches can capture texture similarities, and this 
is perhaps why NLM-PBS attains consistently high accuracy on thalamus. 

Using volBrain with a local library provided the best results. In this case the train-
ing data was matched perfectly to the test data, while the external library consisted of 
different imaging sequences from different scanners and manually labeled by differ-
ent experts. The differences between local and external library reflects the importance 
of using a coherent labeling protocol and a similar image type within the template 
library. However, it is worth to note that even with these differences, volBrain exter-
nal was able to provide good results highlighting the robustness of the method. 

FSL and Freesurfer excessively over-segmented the structures with FPRs in the 
range 15%-62%. This resulted in consistent inclusion of WM in the segmentation of 
the two evaluated GM structures as qualitatively verified using FA maps. This is a 
major problem for morphometric as well as functional studies, where the over-
segmentation leads to increased variance and impaired ability to detect differences 
and changes. Only volBrain external on hippocampus were found to over-segment. 
This may be due to differences in how the raters interpret the EADC-ADNI protocol. 

The protocols for manual segmentation were based only on T1w images. As can be 
seen from the overlay on FA maps, it seems that WM voxels are occasionally includ-
ed in the manual mask. This may be due to difficulty in determining the correct bor-
der when using T1w contrast only or simply due to co-registration errors between T1 
and DWI. If the former, an improved manual segmentation may be obtained using 
multi-spectral data combining T1 and FA. Also, the automatic methods will most 
likely benefit from a multispectral approach. However, for a method to be versatile it 
is desired to work well on just T1w sequences as acquired in most MRI studies. 
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