J. Banasiak and L. Arlotti, Perturbations of positive semigroups with applications. Springer monographs in mathematics, 2006.

A. Bátkai, M. Kramar-fijav?, and A. Rhandi, Positive Operator Semigroups, volume 257 of Operator Theory: Advances and Applications, pp.10-1007

J. A. Carrillo, B. Perthame, D. Salort, and D. Smets, Qualitative properties of solutions for the noisy integrate and fire model in computational neuroscience, Nonlinearity, vol.28, issue.9, p.3365, 2015.
DOI : 10.1088/0951-7715/28/9/3365

J. Chevallier, Modelling large neural networks via Hawkes processes, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01415622

J. Chevallier, Mean-field limit of generalized Hawkes processes, Stochastic Processes and their Applications, pp.3870-3912, 2017.
DOI : 10.1016/j.spa.2017.02.012

URL : https://hal.archives-ouvertes.fr/hal-01217407

J. Chevallier, M. J. Cáceres, M. Doumic, P. Reynaud, and . Bouret, Microscopic approach of a time elapsed neural model, Mathematical Models and Methods in Applied Sciences, vol.2, issue.14, pp.252669-2719, 2015.
DOI : 10.1093/biostatistics/3.1.1

URL : https://hal.archives-ouvertes.fr/hal-01159215

M. J. Cáceres, J. A. Carrillo, and B. Perthame, Analysis of Nonlinear Noisy Integrate&Fire Neuron Models: blow-up and steady states, The Journal of Mathematical Neuroscience, vol.1, issue.1, p.7, 2011.
DOI : 10.1007/s11118-008-9093-5

A. De-masi, A. Galves, E. Löcherbach, and E. Presutti, Hydrodynamic Limit for Interacting Neurons, Journal of Statistical Physics, vol.11, issue.3, pp.866-902, 2015.
DOI : 10.1007/BFb0086457

F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré, Particle systems with a singular mean-field self-excitation. Application to neuronal networks, Stochastic Processes and their Applications, pp.2451-2492, 2015.
DOI : 10.1016/j.spa.2015.01.007

URL : https://hal.archives-ouvertes.fr/hal-01001716

R. Derndinger, ???ber das Spektrum positiver Generatoren, Mathematische Zeitschrift, vol.23, issue.3, pp.281-293, 1980.
DOI : 10.1007/BF01215091

W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, Differential equations in Banach spaces, pp.61-73, 1986.
DOI : 10.1007/978-1-4612-5561-1

S. Ditlevsen and E. Löcherbach, Multi-class oscillating systems of interacting neurons, Stochastic Processes and their Applications, pp.1840-1869, 2017.
DOI : 10.1016/j.spa.2016.09.013

A. Drogoul and R. Veltz, Hopf bifurcation in a nonlocal nonlinear transport equation stemming from stochastic neural dynamics, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.46, issue.2, p.21101, 2017.
DOI : 10.1103/PhysRevLett.116.238101

URL : https://hal.archives-ouvertes.fr/hal-01412154

A. Duarte, G. Ost, and A. A. Rodríguez, Hydrodynamic Limit for Spatially Structured Interacting Neurons, Journal of Statistical Physics, vol.24, issue.3, pp.1163-1202, 2015.
DOI : 10.1214/13-AAP950

N. Dunford and J. T. Schwartz, Linear operators, 1988.

K. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Semigroup Forum, vol.63, issue.2, 2000.
DOI : 10.1007/s002330010042

N. Fournier and E. Löcherbach, On a toy model of interacting neurons Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, pp.1844-1876, 2016.

W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics: from single neurons to networks and models of cognition, 2014.
DOI : 10.1017/CBO9781107447615

A. Grabosch and H. J. Heijmans, Cauchy problems with state-dependent time evolution, Japan Journal of Applied Mathematics, vol.48, issue.3, pp.433-457, 1990.
DOI : 10.1007/978-3-642-65970-6

M. E. Gurtin and R. C. Maccamy, Non-linear age-dependent population dynamics. Archive for Rational Mechanics and Analysis, pp.281-300, 1974.

J. K. Hale, Ordinary differential equations, 1980.

J. K. Hale, Introduction to functional differential equations, p.2014
DOI : 10.1007/978-1-4612-4342-7

M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, 2011.
DOI : 10.1007/978-0-85729-112-7

URL : https://hal.archives-ouvertes.fr/hal-00877080

G. Iooss, Bifurcation of maps and applications. Number 36 in North-Holland mathematics studies. North-Holland Pub. Co. ; sole distributors for the U, 1979.

E. M. Izhikevich, Dynamical systems in neuroscience: the geometry of excitability and bursting. Computational neuroscience, 2007.

T. Kato, Perturbation theory for linear operators, p.823680095, 2005.

S. Mischler and Q. Weng, Relaxation in Time Elapsed Neuron Network Models in the Weak Connectivity Regime, Acta Applicandae Mathematicae, vol.90, issue.2, 2015.
DOI : 10.1007/BF01303264

URL : https://hal.archives-ouvertes.fr/hal-01148645

S. Olver and A. Townsend, A Practical Framework for Infinite-Dimensional Linear Algebra, 2014 First Workshop for High Performance Technical Computing in Dynamic Languages, pp.57-62, 2014.
DOI : 10.1109/HPTCDL.2014.10

URL : http://arxiv.org/pdf/1409.5529

S. Ostojic, N. Brunel, and V. Hakim, Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities, Journal of Computational Neuroscience, vol.97, issue.3, pp.369-392, 2009.
DOI : 10.1007/978-3-642-96807-5

K. Pakdaman, B. Perthame, and D. Salort, Relaxation and Self-Sustained Oscillations in the Time Elapsed Neuron Network Model, SIAM Journal on Applied Mathematics, vol.73, issue.3, pp.1260-1279, 2013.
DOI : 10.1137/110847962

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, 1983.
DOI : 10.1007/978-1-4612-5561-1

B. Perthame, Transport equations in biology, Frontiers in mathematics. Birkhäuser, 2007.

J. Pruss, Stability analysis for equilibria in age-specific population dynamics. Nonlinear Analysis: Theory, Methods & Applications, vol.7, issue.12, pp.1291-1313, 1983.

A. Renart, N. Brunel, and X. Wang, Mean-Field Theory of Irregularly Spiking Neuronal Populations and Working Memory in Recurrent Cortical Networks, Boca Raton, 2004.
DOI : 10.1201/9780203494462.ch15

P. Robert and J. Touboul, On the Dynamics of Random Neuronal Networks, Journal of Statistical Physics, vol.11, issue.1, pp.545-584, 2016.
DOI : 10.1137/110832392

URL : https://hal.archives-ouvertes.fr/hal-01075242

T. Schwalger, M. Deger, and W. Gerstner, Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size, PLOS Computational Biology, vol.1, issue.4, p.1005507, 2017.
DOI : 10.1371/journal.pcbi.1005507.t002

S. A. Van-gils, S. G. Janssens, Y. A. Kuznetsov, and S. Visser, On local bifurcations in neural field models with transmission delays, Journal of Mathematical Biology, vol.13, issue.2, 2012.
DOI : 10.1016/S0006-3495(72)86068-5

A. Vanderbauwhede and G. Iooss, Center Manifold Theory in Infinite Dimensions, Dynamics reported, pp.125-163, 1992.
DOI : 10.1007/978-3-642-61243-5_4

R. Veltz and O. Faugeras, A Center Manifold Result for Delayed Neural Fields Equations, SIAM Journal on Mathematical Analysis, vol.45, issue.3, p.2013
DOI : 10.1137/110856162

URL : https://hal.archives-ouvertes.fr/hal-00719794

G. F. Webb, Theory of nonlinear age-dependent population dynamics. Number 89 in Monographs and textbooks in pure and applied mathematics. M. Dekker, 1985.

Q. Weng, General time elapsed neuron network model: well-posedness and strong connectivity regime, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01243163