A hp-Hybrid High-Order method for variable diffusion on general meshes

Abstract : In this work, we introduce and analyze a hp-Hybrid High-Order method for a variable diffusion problem. The proposed method is valid in arbitrary space dimension and for fairly general polytopal meshes. Variable approximation degrees are also supported. We formulate hp-convergence estimates for both the energy-and L2-norms of the error, which are the first results of this kind for Hybrid High-Order methods. The estimates are fully robust with respect to the heterogeneity of the diffusion coefficient, and show only a mild dependence on its (local) anisotropy. The expected exponential convergence behaviour is numerically shown on a variety of meshes for both isotropic and strongly anisotropic diffusion problems.
Type de document :
Article dans une revue
Computational Methods in Applied Mathematics, De Gruyter, 2017, 17 (3), 〈https://doi.org/10.1515/cmam-2017-0009〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01290251
Contributeur : Joubine Aghili <>
Soumis le : jeudi 17 mars 2016 - 18:32:01
Dernière modification le : mercredi 10 octobre 2018 - 10:17:32
Document(s) archivé(s) le : samedi 18 juin 2016 - 17:52:50

Fichier

hp-hho.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01290251, version 1

Citation

Joubine Aghili, Daniele Di Pietro, Berardo Ruffini. A hp-Hybrid High-Order method for variable diffusion on general meshes. Computational Methods in Applied Mathematics, De Gruyter, 2017, 17 (3), 〈https://doi.org/10.1515/cmam-2017-0009〉. 〈hal-01290251〉

Partager

Métriques

Consultations de la notice

350

Téléchargements de fichiers

194