On the Bi2O3-Al2O3-PbO system
F. Oudich, Nicolas David, J. M. Fiorani, Michel Vilasi

To cite this version:
F. Oudich, Nicolas David, J. M. Fiorani, Michel Vilasi. On the Bi2O3-Al2O3-PbO system. XXXIX JEEP - 39TH EDITION OF THE JOINT EUROPEAN DAYS ON EQUILIBRIUM BETWEEN PHASES, Mar 2013, Nancy, France. 10.1051/matecconf/20130301009 . hal-01289980

HAL Id: hal-01289980
https://hal.archives-ouvertes.fr/hal-01289980
Submitted on 12 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the Bi$_2$O$_3$-Al$_2$O$_3$-PbO system

F. Oudich, N. David, J.M. Fiorani, and M. Vilasi

Institut Jean Lamour, UMR 7198 CNRS, Equipe 206 - Surface et interface: réactivité chimique des matériaux, Université de Lorraine, Nancy, France

The present work is dedicated to the description of the pseudo-binary Al$_2$O$_3$-Bi$_2$O$_3$ and the isothermal section at 600°C of the system Al$_2$O$_3$-Bi$_2$O$_3$-PbO according to a Calphad approach. It takes part of the complete description of the complex system Pb-Bi-Fe-(Al,Cr)-O. Such study is of high interest for the nuclear community that aims to develop protective coatings for the MEGAPIE spallation target to prevent the T91 steel from corrosion due to contact with lead-bismuth eutectic liquid.

A survey in literature has revealed a discrepancy between equilibrium phases diagrams related to the Al$_2$O$_3$-Bi$_2$O$_3$ system where four different compounds were reported. Therefore, an experimental reinvestigation of the system was necessary. Samples were prepared from mixtures of powders of high purity at different compositions then annealed at different temperatures. Different techniques were used to characterize the samples: XRD, SEM (EDS and WDS) and DTA. Only two stoichiometric compounds were found to be stable at low temperature, and invariant transformations were determined. The same process was used in case of addition of PbO. A modeling of the binary is also proposed.