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Abstract. In this paper we present a new, simple, method for creating
digital 3D surfaces of revolution. One can choose the topology of the
surface that may have 0, 1 or no tunnels. The de�nition we propose is
not limited to circles as curves of revolution but can be extended to any
type of implicit curves.
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1 Introduction

Pottery wheels made the surface of revolution one of the �rst types of complex
surfaces that man has created. In Computer Graphics [1], surfaces of revolution,
as special case of swept surfaces, have always represented a simple way of con-
structing surfaces that appear quite frequently in real life: glasses, chess pieces,
lamps, �ower pots, etc. They are based on a 2D curve pro�le called generatrix
and a revolution curve which is classically a 2D circle. In digital geometry, there
are not many papers that have dealt speci�cally with the problem of generating
digital surfaces of revolution. There is the works of Nilo Stolte that indirectly
looked at such problems as part of research on the visualization of implicit sur-
faces with cylindrical coordinates [2, 3]. In two more recent papers, G.Kumar
and P.Bhowmick [4, 5] proposed a virtual pottery design tool based on digital
surfaces of revolution. Their idea is to generate a digital surface of revolution by
superposing 2D digital annuli. The horizontal section of a continuous surface of
revolution is, by de�nition, the curve of revolution and thus, in general, a circle.
A vertical slice of height one can of course be very complicated but rasterized, it
corresponds to a 2D digital annulus. The authors work with a classical notion of
circle close to the one proposed by Bresenham, de�ned only for integer radii and
center, and this creates some di�culties. While the center of the annulus for z
is the point of integer coordinates (0, 0, z), there is no particular reason for the
interior or exterior radii to be an integer. Moreover, Bresenham circles do not �ll
space (i.e. concentric Bresenham circles of increasing radii leave points that do
not belong to any circle). G.Kumar and P.Bhowmick solve this by determining
the missing (also sometimes called absentee) voxels that would otherwise leave
6-connected holes in the revolution surface. Their method is quite general since
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it does not require the generatrix to be functional in z (only one ordinate value
per z, if we consider the generatrix to be in the yz-space). The method for �lling
the holes with absentee voxels is however quite complicated and limited to cir-
cular curves of revolution. One way around this problem could be to use Andres
circles [6�8] that, do, �ll space and are de�ned for arbitrary center and radii.

In this paper we are going to adopt a di�erent approach based on the digiti-
zation of implicit curves and surfaces proposed at the last DGCI conference [9]
with the participation of the authors of the present paper. We showed that it is
possible to analytically de�ne digital implicit surfaces in dimension n with con-
trolled topology. Under some regularity conditions [9], one can ensure that the
analytically de�ned digital implicit surface is a k-tunnel free (n−1)-dimensional
digital surface in dimension n, with 0 ≤ k < n. In this paper, we show how
this can be used to create surfaces of revolution with a 2D explicit function as
generatrix and a 2D implicit curve as curve of revolution. The generatrix and the
curve of revolution are combined in order to obtain a 3D implicit surface that is
then digitized into 0, 1 or 2-tunnel free digital surfaces of revolution. The control
of the topology allows us to choose the type of surface we need for a given appli-
cation. For instance, for visualization purposes, a thinner 2-tunnel free surface
might su�ce. If we want to use a 3D printer however, we need 2-connectivity
(voxel-face connectivity) and thus 0 or 1-tunnel free surfaces of revolution. The
curve of revolution is, in our model, not limited to a circle. One can use any
implicit 2D curve as long as it separates space into a positive and a negative
side. Of course, if the curve is in�nite, one has to consider a generation window
in which to consider the revolution curve or simply be satis�ed with an ana-
lytical description of the surface of revolution. By considering only an explicit
function generatrix of type y = f(z), our generatrix are less general than [4,
5]. There are however solutions and we will give an example in the conclusion.
There remains some work to be done in this regard. The method presented in
this paper is very simple and general but it comes with some limitations when
the curve of revolution does not respect some regularity conditions [9]. We will
give an example of a surface of revolution that has holes.

In section two, we present basic notations and the analytical implicit surface
digitization method. In section three, we present our digital surface of revolution,
show some results and extensions. We �nish the section with the limitations of
our generation method. In the fourth and last section we conclude and present
short and long term perspectives for this work.

2 Basic notions and notations

Let {e1, . . . , en} denote the canonical basis of the n-dimensional Euclidean vec-
tor space. Let Zn be the subset of Rn that consists of all the integer coordinate
points. A digital (resp. Euclidean) point is an element of Zn (resp. Rn). We
denote by xi the i-th coordinate of a point or a vector x, that is its coordi-
nate associated to ei. A digital (resp. Euclidean) object is a set of digital (resp.
Euclidean) points.
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For all k ∈ {0, . . . , n−1}, two integer points v and w are said to be k-adjacent
or k-neighbors, if for all i ∈ {1, . . . , n}, |vi−wi| ≤ 1 and

∑n
j=1 |vj − wj | ≤ n−k.

In the 2-dimensional plane, the 0- and 1-neighborhood notations correspond re-
spectively to the classical 8- and 4-neighborhood notations. In the 3-dimensional
space, the 0-, 1- and 2-neighborhood notations correspond respectively to the
classical 26- ,18- and 6-neighborhood notations.

A k-path is a sequence of integer points such that every two consecutive points
in the sequence are k-adjacent. A digital object E is k-connected if there exists
a k-path in E between any two points of E. A maximum k-connected subset of
E is called a k-connected component. Let us suppose that the complement of a
digital object E, Zn \E admits exactly two k-connected components F1 and F2,
or in other words that there exists no k-path joining integer points of F1 and
F2, then E is said to be k-separating, or k-tunnel free, in Zn. If there is no path
from F1 to F2 then E is said to be 0-separating or simply separating.

Let ⊕ be the Minkowski addition, known as dilation, such that A ⊕ B =
∪b∈B{a+ b : a ∈ A}.

2.1 Implicit Surface Digitization

In this paper we are considering analytical digital implicit surfaces as de�ned in
[9]. Let S be an implicit surface S = {x ∈ Rn : f(x) = 0} which separates space
into one (or several) region(s) where f(x) < 0 and one (or several) region(s)
where f(x) > 0. Our digitization method is based on a morphological type
digitization method for implicit surfaces based on k-�akes (introduced in [10]).
Those adjacency �akes can be described as the union of a �nite number of
straight segments centered on the origin (see �gure 1).

De�nition 1. Let 0 ≤ k < 3. The minimal k-adjacency �ake, Fk(ρ) with radius
ρ ∈ R+ is de�ned by:

Fk(ρ) =

{
λu : λ ∈ [0, ρ], u ∈ {−1, 0, 1}3,

3∑
i=1

|ui| = 3− k

}
.

The Flake-digitization of a (n − 1)-dimensional surface S in Rn is de�ned
by Fk(S) =

{
v ∈ Zn :

(
Fk

(
1
2

)
⊕ v
)
∩ S 6= ∅

}
. Under some conditions [9], the

�ake digitization can be analytically characterized by considering only the ver-
tices of the k-�ake. We are now simply going to consider that this analytical
characterization corresponds to a proper analytical digitization method de�ned
by:

Ak(S) =

{
v ∈ Zn :

min{f(x) : x ∈ (v ⊕ Fk(1/2))} ≤ 0
and max{f(x) : x ∈ (v ⊕ Fk(1/2))} ≥ 0

}
.

When the regularity conditions are veri�ed then Ak(S) = Fk(S) otherwise
there are some di�erences that may in some cases create topological problems
(see section 3.6) but this is largely compensated by the fact that Ak(S) is easy to
construct while Fk(S) may not. The regularity conditions as presented in [9] are
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Fig. 1. Adjacency �akes in 3D.

the following: S should be r-regular [11] nD surface with r >
(√
n− k +

√
n
)
/2.

An r-regular set [11] is closed set such that for all x ∈ δE, it is possible to �nd
two osculating open balls of radius r, one lying entirely inside E and the other
lying entirely outside E. These conditions ensures the k-tunnel freeness of the
digital implicit surface. They also preserve the connected components between
the complement of the implicit surface and the complement of its digitization
with regard to the k-adjacency relationship. These conditions are su�cient but
not necessary. A necessary condition is still an open (and di�cult) question. For
short, Ak(S) is di�erent from Fk(S) in places where the details of the curve S
are small compared to the grid size which is not completely surprising. What is
important is that the �ake digitization Fk(S) is k-separating in Zn if it, basically,
de�nes a positive and a negative region (for f de�ning S) greater than a pixel
[10, 9]. This remains true for Ak(S) under the restrictions we mentioned.

3 Digital Surface of Revolution

3.1 Implicit surface of revolution de�nition

The surfaces of revolution are usually de�ned by rotating a curve (called the
generatrix) around a straight line (the axis). In this paper, we generalise the
notion: we use an explicit function y = g(z) as a generatrix and instead of
rotating it around an axis, we are using a revolution curve. In our work, the
revolution function can be any 2D implicit continuous curve r(x, y) = 0, (x, y) ∈
[−1, 1]2 ⊂ R2, that separates the window [−1, 1]2 into two regions (one where
the function r is positive, one where it is negative). If the curve of revolution
is a circle then we obtain the classical surface of revolution. Note that the y of
the generatrix de�nition y = g(z) is not the same y that appears in the curve of
revolution implicit equation r(x, y) = 0.

The surfaces we de�ne use the generatrix as an homothetic factor for the
revolution curve:
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De�nition 2.

S(g, r) =

{
(x, y, z) ∈ R3, r

(
x

g(z)
,
y

g(z)

)
= 0

}
There is therefore a constraint on the generatrix: ∀z ∈ R, g(z) 6= 0. Actually,
if one considers surfaces or revolution, then one can restrict the de�nition to
g(z) >= 1. For g(z) = 1, with r(x, y) de�ned on [−1, 1]2, the slice of the digital
surface of revolution corresponding to z will only be, at most, one voxel big.
Smaller values of g(z) may only make the slice disappear because it is smaller
than what the analytical �ake digitization can detect. Also, this constraint can
be lifted in many cases by simply developping the expression r depending on
how it is de�ned. For instance, when r(x, y) = x2 + y2 − 1 = 0 is the unit
circle c, the resulting surface is the classical surfaces of revolution: S(g, c) ={
x, y, z ∈ R3, x2 + y2 − g(z)2 = 0

}
.

In all cases, we obtain an implicit surface that can be digitized using the
Ak-digitization.

3.2 Digital Generatrix

Sometimes, the generatrix we would like to consider is not de�ned by an explicit
function but by a digital curve given as a set of digital points (such as an hand
drawn generatrix for instance). In this case, one can easily recreate an explicit
function generatrix.

There are several simple ways to transform a set of discrete points into an
explicit function. The point to look out for is that the generatrix must be de�ned
in such a way that it allows to compute values for z± 1

2 (see section 3.3). A �rst
method consist in creating an explicit function by interpolation of the discrete
points that form your digital curve. A second method consists in simply consider
that each integer z value is valid for the interval [z − 1/2, z + 1/2].

The last method consists in decomposing the digital curve into digital line
segments and then taking the continuous analog of the digital line: for a digital
line 0 ≤ ax−by+c < b, we will consider the continuous line ax−by−c−b/2 = 0 or
ax−by−c−a/2 = 0 depending on the orientation. A little care has to be taken for
the end points of the di�erent digital lines. If the intersections of two consecutive
line segments does not fall in the pixel of the digital point corresponding to the
common end point then a little patch function has to be added (see [12]) or one
has to use an adapted line recognition where this problem does not occur [13].
This creates a piecewise de�ned explicit function. Figure 2 shows a digitized
sinusoid that we have decomposed into digital line segments. In this example,
the curve of revolution is a circle.

3.3 Algorithm

The digitization algorithm has been implemented in Mathematica. It is decom-
posed into two main functions: the �rst function tests if a point is in the digiti-
zation; the second scans the 3D digital space, applies the previous test and adds
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Fig. 2. A digital generatrix decomposed into digital straight segments (left) and the
resulting revolution surface (right) using the unit implicit circle as revolution curve.

the valid points to the digitization result. We present here the three functions
(one for each 3D �ake digitization) that tests if a voxel v(x, y, z) belongs to the
digitization of the surface S de�ned by its implicit equation. Then we present the
scanning function. Since the code for those functions is very simple, we present
the functions as they appear in the mathematica notebook.

A2-digitization test: This will de�ne a surface that is 2-separating and 1-
connected. This is what is classically called a naive surface in the digital geometry
community. S is the implicit 3D surface. The result is a Boolean expression.

inNaif3D[S_, x_, y_, z_] :=

Module[{f1, f2, f3, f4, f5, f6},
f1 = 1.0 ∗ S[x+ 0.5, y, z]; f2 = 1.0 ∗ S[x− 0.5, y, z];
f3 = 1.0 ∗ S[x, y − 0.5, z]; f4 = 1.0 ∗ S[x, y + 0.5, z];
f5 = 1.0 ∗ S[x, y, z + 0.5]; f6 = 1.0 ∗ S[x, y, z − 0.5];

And[Min[f1, f2, f3, f4, f5, f6] <= 0, Max[f1, f2, f3, f4, f5, f6] >= 0]];

A1-digitization test: This will de�ne a surface that is 1-separating and
0-connected. This is an intermediary surface type between the naive and the
supercover types.

inInter3D[S_, x_, y_, z_] :=

Module[{f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12},
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f1 = 1.0 ∗ S[x+ 0.5, y + 0.5, z]; f2 = 1.0 ∗ S[x− 0.5, y + 0.5, z];
f3 = 1.0 ∗ S[x+ 0.5, y − 0.5, z]; f4 = 1.0 ∗ S[x− 0.5, y − 0.5, z];
f5 = 1.0 ∗ S[x+ 0.5, y, z + 0.5]; f6 = 1.0 ∗ S[x+ 0.5, y, z − 0.5];
f7 = 1.0 ∗ S[x− 0.5, y, z + 0.5]; f8 = 1.0 ∗ S[x− 0.5, y, z − 0.5];
f9 = 1.0 ∗ S[x, y + 0.5, z + 0.5]; f10 = 1.0 ∗ S[x, y + 0.5, z − 0.5];
f11 = 1.0 ∗ S[x, y − 0.5, z + 0.5]; f12 = 1.0 ∗ S[x, y − 0.5, z − 0.5];

And[Min[f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12] <= 0,

Max[f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12] >= 0]];

A0-digitization test: This will de�ne a surface that is 0-separating and
0-connected. This is close to the classical supercover type surfaces [14�17].

inSuper3D[S_, x_, y_, z_] :=

Module[{f1, f2, f3, f4, f5, f6, f7, f8},
f1 = 1.0 ∗ S[x+ 0.5, y + 0.5, z + 0.5]; f2 = 1.0 ∗ S[x+ 0.5, y + 0.5, z − 0.5];
f3 = 1.0 ∗ S[x+ 0.5, y − 0.5, z + 0.5]; f4 = 1.0 ∗ S[x+ 0.5, y − 0.5, z − 0.5];
f5 = 1.0 ∗ S[x− 0.5, y + 0.5, z + 0.5]; f6 = 1.0 ∗ S[x− 0.5, y + 0.5, z − 0.5];
f7 = 1.0 ∗ S[x− 0.5, y − 0.5, z + 0.5]; f8 = 1.0 ∗ S[x− 0.5, y − 0.5, z − 0.5];

And[Min[f1, f2, f3, f4, f5, f6, f7, f8] <= 0,

Max[f1, f2, f3, f4, f5, f6, f7, f8] >= 0]];

Scan Algorithm: In the following module, (x0,x1), (y0,y1) and (z0,z1) are
the intervals on which to generate the surface. A list of elements in mathematica,
for instance a, b, c, is de�ned by {a, b, c}. The operation 'AppendTo' adds a value
at the end of the list. The result of this module will be a list of points (a point
is de�ned as a list of three coordinates). 'TopoTest' stands for one of the above
mentioned modules inNaif3D, inInter3D, inSuper3D.

Revolution [S_, x0_, x1_, y0_, y1_, z0_, z1_] :=

Module[{x, y, z, listpoint}, listpoint = {};
For[x = x0, x <= x1, x++,

For[y = y0, y <= y1, y ++,

For[z = z0, z <= z1, z ++,

If[TopoTest[S, x, y, z],

AppendTo[listpoint, {x, y, z}]];
]]];

listpoint];

In order to be concise, the scan algorithm we present here is a very basic
one. It is not very di�cult to design one that works by propagation with a seed
point and this for all three types of surfaces. A seed point is also not di�cult to
determine when considering surfaces of revolution.
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Fig. 3. Digital Generalized Surface of Revolution. The generatrix (left), the revolution
curve (center) and the resulting digital surface (right).

3.4 Results

In this part, we present some examples of digital surfaces of revolution. Figure 3
presents the digitization of a generalized surface of revolution with a sinusoid
function g(z) = Sin[z/9] ∗ 12 + 17 as generatrix and the lemniscate function
r(x, y) = (0.25 ∗x2+0.15 ∗ y2)2− 0.2 ∗ (0.25 ∗x2− 0.15 ∗ y2) as revolution curve.

Fig. 4. Several examples of digital surfaces obtained with lemniscate revolution curves
and sinusoidal generatrices.

Figure 4 presents similar objects than in �gure 3. Between two objects, the
lemniscate (the revolution curve) has been rotated and the phase of the sinusoid
(the generatrix) has been changed1. The view point of the camera is the same
for the four objects.

Figure 5 presents the three 3D digitizations of a surface: the naive A2-
digitization on the top right, the A1-digitization on the bottom left and the
A0-digitization on the bottom right. This surface is built using the same gen-
eratrix as in �gure 3 and r(x, y) = (2x2 + 2y2)3 − 48x2y2 = 0 as a revolution

1 An animated version of these results can be seen on the following web page: http :
//xlim− sic.labo.univ − poitiers.fr/themes/ig/ig_axe_3.php
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Fig. 5. The three di�erent digitizations (A2,A1 and A0) with r(x, y) : (2x2 + 2y2)3 −
48x2y2 = 0 as a revolution curve and the generatrix g(z) = Sin[z/9] ∗ 12 + 17.

curve (top left of the �gure). Voxels are represented smaller in thoses pictures
to emphasize the topological properties (connectivity and tunnels).

3.5 Extensions

The method we have presented can easily be extended to generate various, more
general, types of surfaces. One simple extension is to use the generatrix, not as
an homothetic function but as central axis for the revolution curve:

De�nition 3.

S(g, r) =
{
x, y, z ∈ R3, r (x, y − g(z)) = 0

}
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In an other example, we combine a homothetic function h(z) and two func-
tions for translations t(z), u(z) of the center of the revolution curve:

De�nition 4.

S(h, t, r) =

{
x, y, z ∈ R3, r

(
x

h(z)
− u(z), y

h(z)
− t(z)

)
= 0

}
On the left of �gure 6 we can see an example where a sinusoid generatrix

is considered as a translation function for the revolutions function (here the
unit circle). On the right of �gure 6, the digital surface is obtained with an
homothetic factor h(z) = |z|/5, two translation functions t(z) = sin(z/5) and
u(z) = cos(z/5) and the unit circle r(x, y) = x2 + y2 − 1 = 0 as a revolution
function. The implicit equation of the surface is the one of de�nition 4.

Fig. 6. Two examples of some other surface we can build with our algorithm.

3.6 Limitations

The main limitation of this digital revolution surface generation method is that
the analytical digitization can miss some points. Figure 7 (left) shows that a
curve can cross a voxel but the vertices of the �ake are on only one side of the
curve. The voxel is therefore wrongly discarded from the digitization result and
disconnections appear. This problem is classically dealt with interval arithmetics
[18]. The problem with an interval arithmetic approach is that it is easy to use
to replace A0 but more complicated for both other analytical digitizations. This
could be an interesting problems for the the future.

Figure 7 presents an example where this limitation can be seen: there are
some missing voxels in the surface. Those missing voxels correspond to the points
where the revolution curve (middle of �gure 7) crosses itself.



Digital Surface of Revolution 11

Fig. 7. A2-digitization with r(x, y) = 16y3 + 12y2 − (4x2 − 1)2 = 0 as a revolution
curve and the generatrix g(z) = Sin[z/9] ∗ 12 + 17. Visible holes in the surface.

4 Conclusion

In this paper, we have presented a very simple generation algorithm for digital
surfaces of revolution. We have proposed some extensions that correspond to
more general surfaces such as swept surfaces. We need now to investigate that
and see if it is possible to create all/most types of digital swept surfaces. The
algorithm leads to topologically controlled digital surfaces (0, 1 or 2 connected)
upto some special cases where the surface might have unexpected holes. Let us
note that this problem seems to appear quite rarely. We had to run a lot of
tests in order to get such a �gure. Compared to previous methods [4, 5], our
method appears to be simpler and more general. Our perspectives are �rstly to
combine a parametric function as generatrix with implicit revolution curves, the
control of the topology in this case could be ensured by the implicit expression of
the surface. Secondly, we want to investigate the digitization of full parametric
surfaces to allow a hand-drawn generatrix and hand-drawn revolution curve.
This should solve some of the problems we have with some con�gurations where
we had holes in the surfaces. The problem in �gure 7, for instance, would not
occur anymore. We already have some interesting results (see �gure 8 for an
example) which need to be consolidated.

Fig. 8. Hand-drawn generatrix with an implicit circle as revolution curve.
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