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Reasoning with dynamically linked 
multiple representations of functions

Guido Pinkernell

University of Education Heidelberg, Heidelberg, Germany

In video-taped interviews, teacher-students were asked 
to describe and explain effects of a parameter a on the 
standard representations of f(x)=x²+a in a computer 
based dynamic learning environment. An analysis of 
one particular interesting yet typical misconception 
leads to differentiating between surface perception and 
structural insight. Theoretical considerations based on 
Duval and Davydov lead to postulating that for a full 
understanding of the relation between a and f(x)=x²+a, 
a learner needs to identify to structural analogies be-
tween the representations of f. A qualitative analysis of 
further interviews results in a category model of student 
responses that can be used for diagnostic purposes.

Keywords: Multiple representations, functions, abstraction, 

ICT, qualitative analysis.

INTRODUCTION

A typical task connected with the use of mathemati-
cal software in classroom is to explore the relations 
between the standard representations of functions. 
For example, pupils could be asked to explore the ef-
fects of a parameter a in f(x) = x² + a on the shape and 
position of the graph of f by means of a dynamically 
linked multiple representation learning environment, 
where the value of a is controlled by a slider (Figure 1). 

Usually, it seems sufficient to observe that changing 
the value of a causes the parabola to move upwards 
while a gives the distance. But is it really as simple 
as that? Just describe what seems, literally, obvious?

Duval (2002) argues that for showing a full under-
standing of the concept of function, a learner needs 
to be able to change within and between various rep-
resentations of a function, for example, equation, 
table and graph. This means that properties of one 
representation are explained by properties of another. 

If a learner is not able to perform such a change then, 
following Duval’s rationale, he does not understand 
to the full extent, even if his observations within one 
representation appear to be perfectly valid.

This article begins with a case study that illustrates 
Duval’s concept of understanding functions. A stu-
dent describes the effects of the parameter a on the 
graph of f(x) = x² + a (Figure 1). She then realises that one 
of her observations contradicts what she has learned 
about how graphs and equations connect, but she is 
not able to resolve this contradiction. She knows a lot, 
yet she does not quite understand.

So it appears that learning about functions based on 
visual perception only is not sufficient. For develop-
ing a sound understanding a learner needs to turn his 
attention from the visual properties of the different 
representations to structural analogies between them. 
These analogies do not equate to perceivable simi-
larities between the representations. For identifying 
structural analogies one needs to “see through” the 
specific appearance of each representation. In this 
sense, the identification of structural analogies is a 
form of abstraction. Hence this article then turns to 
the concept of learning by scientific abstraction by 

Figure 1: Dynamic multiple representation environment  

for exploring the effects of a on the representations of f(x) = x² + a
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Davydov (1972). It serves as a suitable theoretical basis 
for justifying the postulation that learners need to 
refer to a structural level.

When theoretical considerations lead to expect that 
learners behave in a specific way then we must be 
certain that they are able to do so. The last part of this 
article reports on a qualitative analysis of further 
interviews with teacher-students where three cate-
gories of understanding could be identified, among 
them references to structural analogies between rep-
resentations as required by theory.

A CASE STUDY 

In videotaped interviews, teacher-students of the 
University of Education Heidelberg were given the 
task as shown in Figure 1. They first were asked to 
describe the changes within graph, table and term 
when the slider is operated. Then they were asked 
to explain why they thought their descriptions were 
correct. One student described the effects of the slider 
as both a translation and a change of shape:

1	 Student: 	 [moves slider to the right] well 
the parabola moves upwards along the y-axis 

… the um how is it called the width [moves 
both palms repeatedly towards each other 
as if clapping hands]

2	 Interviewer: 	 yesyes, ok
3	 Student: 	 changes … anyway when one 

moves it to the right … towards the positive 
… [moves slider to the far right such that the 
parabola nearly vanishes from the screen] 

… and when one moves it downwards to the 
negative [moves slider to the left such that 
the parabola’s vertex nearly touches the 
lower screen edge] and here the parabola 
becomes wider but still opens upwards

4	 Interviewer: 	 can you explain why the pa-
rabola moves up or down when one changes 
the slider value [points at the slider with a 
pen]

5	 Student: 	 [looks a the slider, murmurs] 
hm what is a … what … is a [leans back, talks 
louder] a is … a was something … a is … the 
y-direction

6	 Interviewer:	 ah
7	 Student:	 when I … upwards … well then it 

is not a normal parabola any more then it is, 
like, somehow narrower

When asking the student to explain her observations 
(line 4) the interviewer, who is the author of this text, 
ignores that she describes the effects of a as a trans-
lation as well as a change of shape of the curve (lines 
1 and 3). The student answers by referring to knowl-
edge about the effects of a she probably had acquired 
at school (line 5). But, again, she immediately points 
out that the curve looks shrunken (line 7). This seems 
to be a problem for her as it conflicts with what she 
has learned about parameters and graphs (meanwhile 
the value of a has been set to 1):

8	 Student:	 this is simply a normal parabola 
that has been moved upwards by one, but the 
width changes too.

9	 Interviewer:	 why do you say ‘but’?
10	 Student:	 the parabola does not move up-

ward only but it becomes narrower too, and 
then there should be something in front of 
the [x] squared

11	 Interviewer:	 ah, why?
12	 Student:	 because that’s how I learned it

That the parabola has been reduced in size is, with 
respect to the algebraic structure of x²+a, wrong. The 
student is aware hereof since she expects a factor in 
front of x² (line 10) which could explain that the curve’s 
shape seems changed. Yet, considering her descrip-
tions of the effects on the graph only, she proves to 
be a careful observer. The parabola does appear to 
be shrunken (Figure 2).

The student realises that her description contradicts 
what she knows about the effects of a parameter 
change on the function graph. To resolve this con-
tradiction she needs to explain the effects of a on the 
graph by means of the specific algebraic properties 
of the equation, i. e. she needs to perform a coherent 
representation change. This is achieved by consid-
ering the additive structure of the expression x²+a: 

Figure 2: Moved upwards only or shrunken too?
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Every single value of f(x)=x² is increased by a, so each 
single point (x|x²+a) of the parabola has been moved 
upwards from its original position (x|x²) by a, which 
affirms that the effect of a can only be interpreted as a 
vertical translation. So a valid interpretation needs to 
be based on an analysis of the term structure. Hence 
algebra plays a decisive role for describing and ex-
plaining relations between parameters and functional 
representations. When a learner describes the effects 
of a parameter change without giving a sufficient 
explanation on the base of the algebraic representa-
tion it is not clear whether his descriptions are based 
on his visual impressions only or whether they are 
based on a structural insight into the situation. This 
is particularly problematic when these descriptions 
fulfil the expectations of the teacher: If a learner only 
mentions a vertical translation by a, does he just re-
produce what he sees, or does his description reflect 
an understanding of the ̀ mechanism´ of how a affects 
each representation of x²+a? One risks confusing a 
correct verbal description with an understanding of 
the situation, pupils as well as teachers.

Referring to possible restraints of the tool and its 
use – e.g., lack of visual aids or failing to adjust the 
window – misses the point this article is trying to 
make. The fact that misinterpretations can appear 
indicate a fundamental difference between a concept 
and its representations. A learning environment with 
a “perfect” design that avoids misinterpretations does 
not guarantee that a learner understands how the 
different representations interact. While giving all 
the correct answers, he might only reproduce what 
he sees on the screen, thus confusing the concept with 
its representations. Each learning environment needs 
to activate the learner’s reflection (Yerushalmy 2005), 
which means – as it is argued here – that he turns from 
describing perceptually accessible properties of each 
representation towards analysing analogies between 
the three representational forms on a structural level.

UNDERSTANDING MULTIPLE 
REPRESENTATIONS BY ABSTRACTION

Does the student from the case study understand the 
effects of a on the representations of x²+a? She gives 
a careful description of what she sees on the screen. 
And she knows, too, how the effects of a parameter on 
a function graph can be read from a given equation. 
But she cannot resolve the conflict between her obser-

vations and her knowledge. In this sense, she shows a 
lack of understanding.

So what does she – or a learner in general – need to 
achieve so that he or she shows a full understanding of 
the relation between parameters and the representa-
tions of function? Giving a description of his observa-
tions only is not sufficient as we have argued, even if 
the description is correct. He needs to give reasons for 
why his observations are valid, i.e., why they are con-
sistent with the whole of the multiple representation 
environment. Reasoning by referring to well-known 
rules might be acceptable, but in the case of the stu-
dent more was needed to clarify the conflict between 
what she saw and what she knew. It would be helpful to 
explain the mechanism of how a and representation of 
x²+a connect. This means to refrain from reproducing 
visual information but to analyse analogies between 
the representations on a structural level. Focussing 
on structures instead of surface leads to a cognitive 
activity that is central for the learning of mathemat-
ical concepts: abstracting. 

In the context of learning with a dynamic multiple rep-
resentation environment abstracting means extract-
ing the essential information from representations by 
conceiving structural analogies between representa-
tional forms while eliminating irrelevant surface 
properties. By referring to the concept of scientific 
abstraction by Davydov (1972) and others we will show 
that conceiving structural analogies is achieved by 
identifying invariants in the dynamic multiple rep-
resentation environment while the structure of the 
algebraic representation is decisive.

Mathematical concept formation 
as the result of abstraction
Mitchelmore and White (2007) identify two different 
approaches to abstraction among theories of mathe-
matical learning, which they call empirical and the-
oretical.

Empirical abstraction refers to a cognitive representa-
tion of knowledge that results from identifying com-
mon properties in a set of examples. “Abstracting is 
an activity by which we become aware of similarities 
[...] among our experiences. [...] An abstraction is some 
kind of lasting change, the result of abstracting, which 
enables us to recognise new experiences as having 
the similarities of an already formed class” (Skemp 
1986). However, empirical abstraction that is limited 
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to a perceptual analysis of real or cognitive objects 
can hardly explain the formation of such concepts 
that meet the scientific requirements of generality 
and precision. Hence, for the formation of a scientific 
concept, a theoretical basis is needed which supports 
argumentation that is independent from perceptual 
evidence.

Theoretical abstraction: To be valid beyond experi-
ence, knowledge needs to be developed within a the-
oretical system of its own, which comes with specific 
symbolic representations and rules of argumenta-
tion. Following Vygotsky (1934/1986), this symbolic 
representation form does not need to resemble any 
physical features of the knowledge that it represents. 
In fact, perceptually or otherwise empirically accessi-
ble properties are unsuitable for forming an abstract 
concept. “A theoretical idea or concept should bring 
together things that are dissimilar, different, multi-
faceted, and not coincident, and should indicate their 
proportion in the whole [...] Such a concept, in contrast 
to an empirical one, does not find something iden-
tical in every particular object in a class, but traces 
the interconnection of particular objects within the 
whole, within the system in its formation” (Davydov 
1972/1990, 255).

For continuing our case analysis the concept of the-
oretical abstraction – or “scientific abstraction” as 
Davydov puts it (1972/1990) – appears to be suitable: 
The effects of a on x²+a can be described as a function 
a → x²+a, which is a function different from f. Its prop-
erties can only be derived from changes within the 
representations of f. The change within the graphical 
representation of f appears to be a translation and a 
dilation, here the student is perfectly right. To decide 
whether this interpretation conforms with the rest 
of the multiple representation environment, the al-
gebraic expression of a → x²+a needs to be taken into 
consideration. Its additive structure decides which 
of the two interpretations of the effect of a on x²+a is 
valid. So it is knowledge about symbolic algebra that 
forms the necessary theoretical basis for understand-
ing relations between the multiple representations of 
a dynamic learning environment. However, the stu-
dent is not able to apply her knowledge about algebra 
to explaining how, or whether at all, her descriptions 
are valid for the whole of changes within the multiple 
representations of f(x) = x²+a.

Abstracting as conceiving structural analogies
In a teaching concept of “ascending from the abstract 
to the concrete” based on Davydov, Giest (2011) states 
that, with each new learning process, “initial abstrac-
tions” are gained from examining a learning material 
that allows change and variation. From varying the 
material, invariants become apparent that initiate 
the necessary reasoning for identifying a constant 
structure within change. With a dynamic multiple 
representation environment (e.g., Figure 1) the neces-
sary variation here is twofold. First by operating the 
slider, thus changing the visible appearance of each 
representation and second, by switching between 
the three representation forms. These changes cor-
respond to Duval’s (2002) forms of representational 
changes that characterise a full understanding of the 
concept of function.

Obviously, the student from the interview meets the 
first of Duval’s requirement at least partially. Within 
the graphical representation, she gives two pertinent 
interpretations of the effects of the parameter change 
on the actual function graph, and from the algebra-
ic representation she can read correct information 
about the effects of parameters on function graphs 
in gene. But she does not fulfil the second criterion 
of Duval. She is not able to make a coherent change 
between the algebraic and the geometric form of rep-
resentation here. Or to say it with Giest: She is not 
able to identify the necessary invariants within the 
multiple representation environment.

Conceiving structural analogies 
as identifying invariants
In Figure 1, the invariant in question is not visible, it 
becomes apparent as changes between and within 
representational forms. Considering the additive 
structure of the term of x²+a, the invariant is charac-
terised by the common operator +a. In the equation, 
the invariant is the summand +a that redefines f1(x)=x² 
to f2(x)=x²+a (Figure 3). In the table, the invariant is the 
constant difference between the values of f1 and f2 
in all table lines. In the graphical representation, the 
invariant is the constant vertical distance between 
the two graphs of f1 and f2, which is the same at all 
points. Thus, the invariant has a specific meaning in 
each representation form, yet, in each form, it can be 
visualised by an arrow with constant direction and 
length. Especially the arrows from the geometric 
representation form show that the effect of a on the 
graph of x²+a must be interpreted as a translation only.
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We can sum up now: To show understanding of the re-
lation between a parameter a and the representations 
of f(x)+a a learner needs to identify the operator +a as 
an invariant within each representation and between 
all representation forms of f.

This seems expecting much from pupils. However, 
next we report on a study where references to struc-
tural analogies in further interviews could in fact 
be identified.

CATEGORIES OF REASONING: 
AN INTERVIEW STUDY

Aim and methods
Together with the interview from our case study fur-
ther interviews were analysed with the aim of cate-
gorising students’ answers regarding to what extent 
they showed structural insight into the relations be-
tween graph, table and term of f. The interviewees 
were teacher-students of the University of Education 
Heidelberg from their first to their third year of study, 
all having selected mathematics as one of their com-
pulsory subjects. The interviews contained questions 
about various tasks about for exploring the relation 
between parameters and quadratic functions. The 
task from Figure 1 was the first. All were accompa-
nied by dynamic multiple representation learning 
environments, prepared in advance by means of the 
TI-Inspire CAS software on a laptop. Apart from two 
questions – the initial one that asked for a description 
of how the given parameter affected the appearance 
of graph, table and equation and one that asked the 
students to explain why they thought their observa-

tions were correct – no other questions were fixed 
in advance.

From the case study and subsequent theoretical 
considerations above, two a-priori categories were 
formulated, “reason with reference to a rule” and 

“reason with structural reference.” Roughly, the first 
comprises all statements where students refer to what 
they have learned and believe to be generally true, 
while the second covers all statements that refer to 
invariants as described above. A refined definition 
will be presented in the results section. The research 
questions were as follows:

(A) To what extent can the descriptions and expla-
nations from the interviews be assigned to the two 
a-priori categories?

(B) How did interviewees exemplify reasons with 
structural reference?

For the analysis, six interviews were selected which, 
on first view, promised a sufficiently large range of 
students’ observations and explanations. The cat-
egories  were developed by means of a qualitative 
content analysis (QIA, Mayring, 2010). The QIA is a 
systematic method for text analysis guided by pre-set 
coding rules. In the variant of the deductive catego-
ry application these coding rules are derived from 
the relevant theoretical framework, which then are 
applied repeatedly by trained coders with the aim of 
refining the rules by enhancing inter-subjective com-
prehension. The coders were three teacher-students 
who did not take part in the interviews selected for 
coding. As mathematics students they were able to 
understand the specific terminology of coding rules 
while, as students, they still relied on a very precise 
formulation of the rules to agree on common coding.

Results and discussion
Apart from the two a-priori categories two more 
emerged from the coding process. First a category 

“proposition” that separated observations prompted 
by the interviewer’s request to describe from explana-
tions prompted by the request to explain, which often 
were very similar. For this, the well-known Toulmin 
model of argumentation was introduced to the cod-
ers; the model itself was not object of analysis here. 
Second a category “reason with reference to an ex-
ample” which became necessary to allow for reasons 
that explained rules by referring to single values of 

Figure 3: The invariant + a, identified in all three representation forms, 

shows that the effect of a on x² + a is indeed a translation
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x or a, mostly x=0 or the actual value of a. Eventually, 
the third and most successful coding round in terms 
of intercoder reliability was based on the following 
rules:

―― Category A “Proposition”: All statements or ges-
tures that can be seen as answers to the interview-
er’s initial prompt “Describe what you see when 
you operate the slider” and that show character-
istics of a general rule. They refer to the effects 
of changes of the slider on the representations of 
the given function. If the interviewee modifies 
his propositions later during interview, these 
modifications are coded within this category too.

―― Category B.1 “Reason with reference to a rule”: All 
statements or gestures that can be considered as 
reasons for the observations assigned to category 
A or their modifications and that refer to a rule 
or sound like one. Such rules often refer to con-
nections between the parameter and the curve’s 
shape or position. The statement does not refer 
to single parameter values but shows that the in-
terviewee implies a global validity. Such rules do 
not need to be stated explicitly but the interview-
ee can also indicate that he knows of such a rule 
(e.g. “that’s how I have learned it”). Even when the 
interviewee shows understanding at a structural 
level in some other part of the interview, reasons 

with reference to rules or knowledge are to be 
assigned to this category. 

―― Category B.2 “Reasons with reference to an ex-
ample”: All statements or gestures that can be 
considered as reasons for the observations as-
signed to category A or their modifications and 
that refer a single value of x or to the actual value 
of the parameter or the actual state of the visible 
graphical configuration. These statements often 
refer to connections between the actual value 
of the parameter or a single value of x and the 
curve’s present shape or position. Even when 
the interviewee refers to rules or shows under-
standing at a structural level elsewhere, reasons 
with reference to rules or knowledge are to be 
assigned to this category. 

―― Category B.3 “Reasons with reference to struc-
ture”: All statements or gestures that can be 
considered as reasons for the observations as-
signed to category A or their modifications and 
that apparently refer to an invariant between 
different representation forms or within one 
representation. The invariant here is the value 
of a which takes on a specific appearance in each 
representation: In the algebraic representation it 
is the summand +a, in the numerical representa-
tion it is the difference between the old and new 

Figure 4: Categories of reasoning while exploring the effects of a parameter a on the epresentations of x² + a in a computer based 

learning environment



Reasoning with dynamically linkedmultiple representations of functions  (Guido Pinkernell)

2537

function value in each table line. In the geometric 
representation it is the vertical distance between 
the graphs of both functions at each point. It dif-
fers from category B.2 insofar as statements here 
do not refer to single values of a but to any value 
of a in general. It differs from category B.1 inso-
far as a has been globally (i.e., for all values of x) 
identified within a representation.

The layout of Figure 4 places the four categories at 
appropriate places within the Toulmin model of argu-
mentation. The proposition (category A) corresponds 
to Toulmin’s “claim” which are descriptions of the ef-
fects of slider changes. The three categories of reason-
ing (B.1, B.2 and B.3) are placed as warrants into the 
diagram. All categories are illustrated by statements 
taken from interviews after little linguistic polish-
ing. Generally a statement was considered exemplary 
when all four coders including the author agreed. One 
statement for category B.1 is an exception which, to 
the author, still appears to be a significant example 
for this category.

For answering research question (A), both a-priori 
categories were suitable for categorizing students’ an-
swers when accompanied by the two more categories 
as defined by the coding rules above. As for question 
(B), the two statements cited here indicate a range of 
possible structural references from evoking dynamic 
images – here a ruler that moves vertically across 
the coordinate plane while measuring a constant 
distance between the two graphs – and a more stat-
ic view on how the different representational forms 
connect – here pointing out that, for all x, a is added 
to the corresponding f(x), which explains the congru-
ence preserving effect of a. The fact that structural 
references were in fact observable shows that such 
references can be expected from students. However, 
these statements also show that references to struc-
tural analogies between representations do not need 
to be as formal as indicated above. The “moving ruler” 
argument is a convincing example.

The category system from Figure 4 covers responses 
from the case a → x² + a only, where the invariant is eas-
ily identified as the constant vertical distance between 
the two curves or the constant difference between the 
two function values, each illustrated by an arrow with 
constant length (Figure 3). With parameters in other 
places of the algebraic expression this is different: 
For example, with b → b · x² or c → (x + c)² other (mis)

interpretations of the effects of the parameter can 
be expected. However, while coding rules need to be 
adjusted to these cases, the need for a structural ref-
erence still holds on theoretical grounds.

Prospects and consequences
Presently, standardised interviews are being devel-
oped for diagnostic purposes based on these results. 
Apart from diagnostic use, these results may be sig-
nificant for classroom teaching too. Nearly all stu-
dents and, in recent interviews, pupils reported that 
they had little, if any, experience with computers in 
school. Many were not able to explain the movements 
on screen which, to them, were totally new. These re-
sults plead for an extended use of dynamic software in 
mathematics teaching. In a dynamic environment, in-
sufficient conceptions about function representations 
become apparent and can be dealt with openly. Last, 
these results show that, for an exploratory learning 
with computer based dynamic multiple representa-
tions too, a sound basic knowledge in algebra is nec-
essary. Knowledge about term structure turns out to 
be essential as it plays a decisive role when validating 
the explorations.
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