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GRADED BRAUER GROUPS OF A GROUPOID WITH INVOLUTION

EL-KAIOUM M. MOUTUOU

ABSTRACT. We define a grouﬁrﬁ(g) containing, in a sense, the graded complex and orthog-
onal Brauer groups of a locally compact group§iegtquipped with an involution. When the
involution is trivial, we show that the new group naturallppides a generalisation of Donovan-
Karoubi's graded orthogonal Brauer grogBrO. More generally, it is shown to be a direct
summand of the well-known graded complex Brauer goup. Intiaxid we prove tha§r§(9)
identifies with a direct sum of a Real cohomology group andatelian grouﬁ(t\R(S, S!) of
Real grade®' -central extensions. A cohomological picture is then given

INTRODUCTION

The idea of working witt¥,-graded realC*-algebras 18] as if they were complex ones first
emerged in Kasparov’'s founding pap&#f] of bivariantK-theory. The trick merely consists of
"complexifying a given graded reaC*-algebra; that is, considering the compléx-algebra
Ac := A ®g C together with the induced,-grading. The latter admits the obvious conjugate-
linear involutiona ®x A — a ®r A. Conversely, any,-graded complex_*-algebraB ad-
mitting a conjugate linear involutioa is necessarily the complexification of a graded €&l
algebraBg, which identifies with the fixed points of. It follows that "complexification” defines
an equivalence from the category %f-graded realC*-algebras to the category @f,-graded
complexC*-algebras endowed with conjugate-linear involutionsqaalledReal involutions
or Real structures in the literaturgéd]). The inverse functor isréalificatior’; that is, taking
the fixed point set of the involution. In fact, working withetitomplexified algebra instead of
the original real one is useful especially when it comes $ouks functional calculus. However,
that equivalence of categories no longer holds whertthalgebras are acted upon by topolog-
ical groupoids endowed with Real structur@§][ By an action of a Real groupoid, t) on a
Zo-gradedC*-algebraA equipped with a Real involutiom we mean an action = (xg4)gecg Of
G by *-automorphisms oA [17] such thatforallg € G, a € Ag(g), <(g)(0(a)) = o(xg(a)),
andog 1 Agg) — As(g) IS an isomorphism of,-gradedC*-algebras. The reason of such a
failure is that an action of on Ar does not extends to an action(@f, t) on A satisfying the
condition mentioned above, unless the involutiorG — G is trivial.

In the present paper, we are dealing with stable contintitau®-Z,-gradedC*-algebras
A [22,26] endowed with Real involution and acted upon by a Real graup$, T). Forget-
ting the involutions, it is known thatl[7, 29] giving such C*-algebras is equivalent to giv-
ing Zs-graded Dixmier-Douady bundle$ over G; that is, aZ,-graded elementar¢*-bundle
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A — Gl9 satisfying Fell's condition, together with a family @,-graded*-isomorphisms
xg 1 As(g) — Ar(g) SUCh thatg, = aga, whenever the product makes sense afd =
ag-1. Thegraded Brauer group?r(S) [29] of G is defined from Morita equivalence classes
of such bundles, or equivalently from stable continuoasé¥.,-gradedC*-algebras equipped
with a G—action. IfG is a transformation groupoid x G, whereG is a locally compact group
acting onX, thenl§r(9) = I§rG(X) is nothing but the equivariant analogue of Parketd,[and
the graded analogue of Crocker-Kumjian-Raeburn-Willig&jslt is shown in R9 that if G is
locally compact second-countable and Hausdorff, then

Br(S) = H°(S., Z,) x H!(G4, Zs) x H2(S,,SY).

Note thatBr generalises Donovan-Karoub@BrU [8] and Parker'sGBr>. Roughly speak-
ing, a graded Dixmier-Douady bundié < §r(9) is of parity 0 (resp. of parityl) if it has
typical fiber K(H) (resp. K(H) @ K(H)), whereH (resp. H) is a graded complex sep-
arable Hilbert space (resp. is a complex separable Hilhgtey [LO, 29]. Noticing that
K(H) @ K(H) = K(H)®Cl,, the isomorphism above implies that if the base spacg isf
connected, theBr(§) is aZ,-graded group.

Instead of simply generalising Donovan-Karoubi’s gradetdagonal Brauer grou@BrO to
groupoids, we are going further. More precisely, we intiala new grou;ﬁ?rﬁ, which enables
us to study graded complex and real Dixmier-Douady bundfeslsaneously. We start with a
locally compact Hausdorff second-countable Real group@id) with a Haar system?0, §2],
and defineB/rl\%(S) as the set of Morita equivalence classefRefal graded Dixmier-Douady
bundlesover (G, t); i.e., graded Dixmier-Douady bundles that come equipped with Real
structures satisfying some relevant relations. We shaé titat we introduced inlf9] a group
Iﬁf{*(S) which actually is but the subgroup H/E{(S) consisting of Real graded Dixmier-
Douady bundles (that we calldifields inloc. cit) that locally look like a graded elementary
complex C*-algebrak endowed with a Real involution. We have shown that such msdl
are, up to Morita equivalence, of eight types. Thus, for algsaupoid (g, t) with connected
base spaceB/rl\%*(S) is aZg-graded group. Roughly speakir@r\,R*(S) is the subgroup of el-
ements of constant types B/TE(S). In the present paper, we explore both geometric (in terms
of groupoid extensions) and cohomological interpretaiofB/rE(S). We show that when the
Real structure of is trivial, I§r?{(9) is a generalisation of Donovan-Karoubi’s graded orthog-
onal Brauer group. For fixed point free involutions, we shbatBrR is a direct summand of
Br. Our interest in the cohomological classification of Rgr@aded Dixmier-Douady bundles is
motivated by the study of twisteiR-theory we present ir[l].

General plan. In Appendix A, we classify all Real structures on graded &ptary complex
C*-algebras. In Section 1, we give general notions of Realegt&hnach bundles on a Real
space. In Section 2, we define Real graded Dixmier-Douadylbarover a locally compact
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second-countable Hausdorff Real groupoid. Then we defmgrkbuplﬁl\%(g) for locally com-
pact second-countable Hausdorff Real group@idnd present few properties. In Section 3,
we investigate connections betweBrRR and the already known Brauer groups of topological
groupoids and spaces, mainly with complex and real Brawmrmgg. In Section 4, we introduce
a grouplnvR that is crucial in the cohomological picture Eﬁ{(S). In Section 5, we define
the notion of generalised classifying morphisms for Reatigd Dixmier-Douady bundles, and
then exhibit their construction in Section 6. In Section &, pvove the first intermediate iso-
morphism theorem establishing an isomorphism betweenmgreuplﬁﬁo(S) generated by
elements of "type 0” and the group of isomorphism classestaiile” generalised classifying
morphisms. Section 8 is devoted to the case of a locally cotripaal groupj.e., when the
unit space of the groupoid is the one point set. In Sectionpmve the main isomorphism
theorems of the paper. Finally, in Section 10, we discussdise of "ungraded” Real Dixmier-
Douady bundles, from which we obtain the Real analogué df [

Preliminaries and conventions Recall [L] that a Real space is a pdiX, T) consisting of
a (topological) spacX and a homeomorphism : X — X, called(Real) involutionsuch
thatt> = 1. A Real mapf : (X,7) — (Y, 0) between Real spaces consists of a riap
X — Y such thato(f(x)) = f(t(x)) for all x € X. More generally, &Real groupoidis
a groupoid G —= X endowed with a groupoid isomorphism: § — G such thatt> =
1. Real morphism$etween Real groupoids are defined in the obvious way. Thegoat
of all Real groupoids and Real morphisms is dendg®l;. There is also the notion of Real
generalised morphisms between Real groupoids definédjnvfhich is an equivariant version
of the ordinary notion of generalised morphisml1@[30]. The category whose objects are
Real groupoids and whose morphisms are Real generalisqzhiaons is denoted bji&. We
refer to 0] for details about all the materials used in this paper: Rpgalpoids and their
cohomology theory, Real generalised morphisms and Redédreentral extensions.

Given a Real spad&, ) (resp. a Real groupoid@, T)), we will often omit the involution and
simply write X (resp.S). The image of an element by the involution will often be eanted
by a "bar” over it;i.e,, for g € G, we writeg := t(g). By a Real point of a Real groupoid we
will mean a one that is invariant under the involution. Real partof G is the subset of all its
Real points.

Finally, throughout the paper, by a Real groupoid we will medocally compact second-
countable Hausdorff Real groupoid with Real Haar systeml(gecit.), unless otherwise stated.

1. REAL FIELDS OF GRADEDBANACH BUNDLES

In this section we give the basics of Real fields of graded Bauspaces, Banach algebras,
Hilbert spaces, and @@ *—algebras over Real spaces. We shall first recall from Apgpehthat
aReal gradedC*-algebra(abbreviated aRg C*—algebrg is aZ,-graded complex*-algebra
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A = A’ @ A! endowed with a conjugate-lineaautomorphisno : A — A such thab? =1
ando(A') = A%, 1 = 0,1. Rg Banach spaces, Banach algebras or Hilbert spaces aredlefi
similarly. The involutiono is called aReal structureand will often be omitted and represented,
as in the case of groupoids, by a "bar”; that is, ioe A we will write a := o(a).

Definition 1.1 (Compare 9]). Let (X, t) be a locally compact Hausdorff Real spacecadn-
tinuous (resp. u.s.c., for upper semi-continuous) Real fiélgraded Banach spaces over
(X, ) consists of a family(A,)xcx Of graded Banach spaces together with a topology on
A =1],cxAx and an involutioro : A — A such that :

(i) the topology onA, induced from that ot is the norm-topology;

(i) the projectionp : A —» X is Real, continuous, and open;

(iii) the mapa — ||a|| is continuous (resp. u.s.c) framtoR™, and|o(a)|| = ||a|, Ya €
A.

(iv) the map(a,b) — a + b is continuous fromA x x A to A;

(v) the scalar multiplicatiofiA, a) — Aa is continuous fronT x A to A;

(vi) the induced bijectiorv, : A, — A, () IS an anti-linear isomorphism of graded Ba-
nach spaces for evegye X, i.e. the diagram

C x Ay Ax (1)

L

C x .AT(X) ——— .AT(X)

commutes, where the horizontal arrows are the actidd of the fibres and the vertical
ones are the Real involution§€ (being endowed with the complex conjugation), and
00 €x = €x(x) © Ox.

(vii) if {a;}isanet inA such that|a;|| — 0 andp(a;) — x € X, thena; — 0y, where0, is
the zero element il ,..

We also say thatA, o) is aReal graded Banach bundle (resp. u.s.c. bundle) oXet).

Definition 1.2. A Rg Hilbert bundle (resp. u.s.c. bundieyer (X, t) is a Real graded Banach
bundle (resp. u.s.c. bundle)f, o) over (X, ) each fibreA, o which is a graded Hilbert space
such that the fibre-wise scalar product satisfies

(0x(&), 0x(M)) = (&,1)

forall £,n € A,.

Definition 1.3. A Rg C*-bundle(resp. u.s.c.C*-bundle) over(X, t) is a Rg Banach bundle
(resp. u.s.c. bundle)A, o) such that each fibre is a grad€d-algebra and the following
properties hold

(a) the map(a,b) — ab is continuous fromk x x A to A;
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(b) o(ab) = o(a)o(b) forall (a,b) € A xx A;
(c) forx € X, o,(a*) = ox(a)* foralla € A,.

Homomorphism of Rg u.s.c. Banach bundles and of u.€tbundles are defined in an
obvious way.

Example 1.4(Trivial bundles) If (A, ~) is any Rg Banach algebra (resp’-algebra), then the
first projectionpr; : (X x A, Tt x ~) — (X, 1) defines a Rg Banach bundle (resp-bundle)
with fibre A. A Real graded Banach bundle (resp-bundle) of this form is callettivial.
Definition 1.5. A u.s.c. field of graded Banach spacés—: X (without Real structure) is
said to bdocally trivial if for everyx € X, there exists a neighborhoati> x such thatfhu is
isomorphic (under a graded isomorphism) to a trivial fidlck A, whereA is a graded Banach
space.

Similarly, we talk about locally trivial field of graded Hidiot spaces, graded Banach algebras,
and graded_*-algebras.

Unless otherwise stated, all of the graded Banach bund@<abundles we are dealing
with are assumed to be locally trivial.

We shall however point out that the above notion of localdtity is not sufficient when Real
structures are involved. Specifically, suppoXert) is a Real space anli, o) — (X, T)isa
u.s.c. Real field of graded Banach spaces which is localliatiin the sense of Definitiod.5.
Then it is not true that there exists a Rg Banach spaseich that the Real spack locally
behaves likeA in the sense that there would exist for-ale X an open invariant neighborhood
(also calledreal neighborhoodU of x (i.e. Tt(U) = U) and a Real homeomorphisi :
p (W) — U x A; or equivalently, that there would exist a Real open cqu&p;c; of X
(i.e. T has an involution — 1 such thatr(U;) = Uz, Vi € I; see P0)) and a trivialisation
hi : p~1(U;) — U; x A such that the following diagram commutes

hi
pHU) — Ui x A (2)

\LTUi l"rxbar
h

g

pH{U) —=U; x A
We then give the following

Definition 1.6. A Rg Banach bundle (respC*-bundle, Hilbert bundle, etc)A — X is
LTCR (locally trivial in the category of Real spaces there exists a Rg Banach space (resp.
C*-algebra, Hilbert space, etchd and a Real local trivialisatiofil;, h;)ic; such that the dia-
gram @) commutes.

Here is an example of a not LTCR Real grad&dbundle.
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Example 1.7.Let A be a simple separable stably finite uni@i-algebra that is not the com-
plexification of any realC*-algebra 3, Corollary 4.1]. Define a continuous Real field of
(trivially) gradedC*-algebrasA over the Real spac®! = {+1, —1} by setting

A=A, and A, =A,

whereA is the complex conjugate @, together with the Real structuee: A —» A given by
the conjugate lineaf-isomorphisnd : A — A (the identity map). Thert is not LTCR since
A ZA.

Definition 1.8 (Pull-backs) If (A, o) is a RgC*-bundle over(X,t) and¢ : (Y,p) —
(X,T) is a continuous Real map, then thall-back of (A, o) along ¢ is the RgC*-bundle
((P*-A, (P*O—) — (Y7 p)l Where(P*.A = YX(p,Y,p'Ai and(P*G(Ua a) = (p(x)a O—(Q)), v(y7 a) S
¢*A. Each fibreg{ ¢*A), can be identified withl ;) and then inherits the grading of the latter.

It can easily be checked thatifl, 0) — (X, T) iSLTCR, then sois the pull-badkp*A, ¢*0)
over(Y,p).
From now on, all our Rg bundles are supposed to be LTCR, untesswise stated.

Remark 1.9. For any Rg Banach (resg.*-) bundle(A, o) — (X, 1), Cy(X,.A) is a Rg Ba-
nach (resp.C*-) algebra with respect to the obvious pointwise operatams$ norm|s|| :=
supyex ||s(x)||; the grading and the Real structure are givenelfy)(x) = ex(s(x)) and
0(s)(x) = o (x)(s(T(x))). Itis straightforward that, o 0(x) = lda_,, Oc(x) 0 0x = Ida,.
In particular, for a Real point € X, A, is a Rg Banach (resfi*-) algebra.

Note that ifp : (A, o) — (X, T) is @a RgC*-bundle, thert,(X) acts by multiplication on
Co(X, A). Moreover, this action is Real and graded in the sense tlimt@ampatible with the
Real structure and the grading. Indeed, fiaf Cy(X) ands € Cy(X, A), we seto(f - s)(x) :=
f(t(x))o(s(t(x))) = T(f)(x) - o(s)(x). Thus,(A, o), whereA = Cy(X,A), is a RgCy(X)-
module [L6].

If (A, o) is a Rg Banach bundle ovéK, t), then a continuous functiofn: X — A such
thatp o s = Idx is called asectionof A. Observe that if is a section ofAd, then for any € X,
s(t(x)) ando(s(x)) are in the same fibré (). We say thak is Real ifs(t(x)) = o(s(x)).
The set of all sectionsfor whichx — ||s(x)]| is in Co(X) is denoted by, (X, A).

Definition 1.10. A Rg Banach bundle : A — X hasenough sectioni$ given anyx € X and
anya € A,, there is a continuous sectiere Cy(X,.A) such that(x) = a.

The following result ensures that all Rg Banach bundlesidensd in the paper have enough
sections (seed] Appendix C] for a detailed proof).
Theorem 1.11(Douady—dal Soglio-Hérault) Any Banach bundle over a paracompact or lo-
cally compact space has enough sections.
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Corollary 1.12. Suppos€ X, T) is a locally compact Hausdorff Real space. Thenp if
(A,0) — (X, 1) is a Rg Banach bundle, Real sections always exist.

Proof. Letx € X, a € A,; then by Theorenl.11there exists € Cy(X,.A) such that(x) = a.
Since for everyx € X, s(x) ando(x)(s(t(x))) belong to the Banach algebs,, the map
§:=1(s + o(s)) is a well-defined section ifi;(X,.A) which verifieso(s) = s. O

Definition 1.13 (Elementary RgC*-bundle) A Rg C*-bundle(A, o) — (X, T) is calledele-
mentaryif each fibreA, is isomorphic to a graded element&ry-algebra.

Definition 1.14. We say that a Rg elementa@/-bundlep : (A, o) — (X, 1) satisfies~ell’s
conditionif (and only if) Cy(X,.A) is continuous-trace.

If (A, 0) — (X, T)is a Rg elementarg*-bundle, the spectrum & is naturally identified
with the Real spacgX, 1) (see [L§, 25, 26]).

In the sequel, we will writé for Cy(X, A) andife : (Y,p) — (X, 1) is a continuous Real
map, we will writeqp*A for Cy(Y, p*A).
Definition 1.15. Suppose thap, : (A,04) — (X,T) andps : (A, 08) — (X, 1) are Rg
C*-bundles. Then a Rg Banach bundle(&, 04) — (X, 1) is called aRgA-B-imprimitivity
bimoduleif each fibre€, is a graded4,—B,—imprimitivity bimodule such that

(@) the natural mapeA xx €,04 X 0¢) — (€, 0¢), (a, &) — a-&and(€ xx B, og X
o4) — (&,0¢), (b, &) — b - ¢ are Real and continuous;
(b) (0.4)x (A, (E:M)) = A, ((0e)x(E), (0e)x(M)) and(os)x ((&,1) 5, ) = ((08)x (&), (0e)x(M)) 5., -
If such a RgA-B-imprimitivity bimodule exists, we say th&#, o 4) and(B, o) areMorita
equivalent

Let (A, 0,4)and(B, o) be elementary Rg*-bundles ovefX, t). Then, as in the ungraded
complex casel[7, p.18], there is a unique elementary Rg-bundle A®B over X x X with
fibre A,&B,, over (x,y) and such thafx,y) — f(x)®g(y) is a section for alf € A =
Co(X,A) andg € B = Cy(X,B). The Real structure is given dym)xéz)(og)y over (x,y).
By this construction, the elementary Ry-bundle(A®B, o0,®03) satisfies Fell's condition
if (A,04) and(B, o) do so, as does its restrictidlox B, 04®x05) to the diagonah =
{(x,x) € X x X}.

Definition 1.16. Let (A, 0,4) and (B, 03) be Rg elementary*-bundles over X, t). Then,
theirtensor products defined to be the Rg elementaty-bundle(A&xB, 04 Qx0s ) over the
Real spacéX, t) which is identified with the diagonalA, t) of (X x X, T x 7).

For the rest of the paper, all Real structures will be omjteedtept where there likely to be
confusion. We will then simply writed for the Rg Banach bundleA, o), and§ for the Real
groupoid(g, T).
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2. THE GRADED BRAUER GROUP OF AREAL GROUPOID

The graded Brauer group of a locally compact grougeidias defined inZ9] as the set
of Morita equivalence classes of graded complex DixmieudXty bundles ove§, generalis-
ing [17]. Our purpose in this section is to define a new Brauer groujghwis relevant to the
category of (locally compact second-countable HausdBd@l groupoids.

Definition 2.1. Let § —= X be a Real groupoid with involutiom. Letp : A — X be a
(LTCR) Rg u.s.c. Banach bundle. A Reglaction by isomorphisms on A is a collection
(xg)geg Of graded isomorphisms (respisomorphismsx : Agg) — Ay (g) sSuch that

(@) g- a:= a4(a) makes(A, o) into a (left) Realj-space with respect tp;

(b) the induced anti-linear graded isomorphisms: A, — Ax verify T,g) o og =

&g 0 To(g) : As(g) — Ayg): fOr everyg € G;
(€) agg = xg 0ty forall (g,g") € G2.
We say that A, x) is a Rg u.s.c. Banacf—-bundle. If the fieldd = [[xAx — Xis

continuous, theiflA, «) is called aRg Banactf-bundle

One also defines Rg u.s.€*—G-bundles, and Rg u.s.c. Hilbert bundles. In the casé*ef
G-bundles, the isomorphismas, are required to b&-isomorphisms, while in the case of Hilbert
g-bundles, they are required to be isometries.

Definition 2.2. A morphism of Rg BanacB-bundles (respC*-G-bundles) A, x) — (B, B)
is a morphism®d : A — B of Rg Banach bundles (resp*-bundles) which ig-equivariant;
i.e, Oyg)oag=Pgo0 Dy forallge .

Notice that if(A, «) is Rg Banacl§-bundle, thenx, = Id4 for all x € X. Indeed, for every
x € X, &y : Ay — Ay is a graded automorphism, ang = «,., = &, o &. In particular, if
we putx = gg~' € X for g € G, we obtainagg-1 = ag 0 0tg1 = Id and therx g+ = o ;! for
everyg € G.

Definition 2.3. A Rg D-D (Dixmier-Douady) bundlever (G, 1) is a RgC*-G-bundle(A, «)
such thatd — X is a Rg elementarg*-bundle that satisfies Fell’s condition. We denote by
BrR(9) the collection all Rg D-D bundles ovér.

Supposex is a Rg§-action by isomorphisms on the Rg*—S-bundleA. Consider the Rg
C*-algebraA = Cy(X;.A). Thenx induces a Rg(G)—linear isomorphisna : s*A — ™A
defined byx(f)(g) := og(f(g)) for f € s*A andg € §.

Example 2.4. Let X xC be endowed with the Real structuse t) := (t(x), t), and theS-action
by automorphismsg - (s(g), t) := (r(g), t). Then with respect to the projectidghx C — X,
X x CisaRg D-D bundle overg —= X .

Example 2.5. Let u = {u*},cx be a Real Haar system 0§ —= X . Let the graded Hilbert
spacef{ = 1?(N) @ 1*(N) be equipped with a fixed Real structure of tyjpe (see Appendix
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A). Forx € X, we putiH x = 12(9%)&H, together with the scalar produt, -)) (x) given by
(& )= | (el (gllednd(o). for £n € L(GH0 = LS. @)

Let}CQ =11 exf}c be equped with the actia- (s(g), @®E&) := (r(g), (pog H®E) €
}Cr(g). Define the Real structure ng by (x, e®E&) — (t(x),T(@)®Jro(&)). Then one
shows that there exists a unique topolog;ﬂ()@such that the canonical projectiGAfg — Gl
defines a locally trivial Rg Hilber§-bundle.

Now, letX, IK( «) be equipped with the operator norm topology, and put

Kg =] [ X«
xeX

together with the Real structure given ly, T) = (x,T), whereT € K+ is defined by
T(e®E) = T(t(@)®Ady, (&) for all e € Hs. Next, define the Regf-actiond on
Xg by
04(s(g), T):==(r(9),gTg™").
We then have a Rg D-D bund[éAcg, 0) overg given by the canonical projection
3/%9 — X, (x,T) —>x

Remark 2.6. The construction of the Rg D-D bundjﬁg in Example2.5 may be used in a
straightforward way to obtain a Rg D-D bundlg.#) out of any Rg Hilbert bundl§-bundle
I

Let G—=X and ' —= Y be Real groupoids and let

7Z—=X

y

be a generalised Real homomorphistf][ Letp : A — Xis a Rg (u.s.c.) Banach bundle.
Thens* A = Z x, x p A is a principal (right)5-space with respect to the operation:

(z,a) - g:= (zg, ' (a))

for r(g) = z. It is obviously a Real space with respect to the involutiora) := (z, a). Next,
defineAZ to be the quotient spae&.A/§ together with the induced Real structure

[Za Cl] = [(Za Cl)],

where we use the notatidn, a] for the orbit of(z, a) in A%. Consider the continuous surjective
mapt o pr; : s"A — Y, (z,a) — t(z), where, as usuapr; denotes the first projection.
Sincer(zg) = t(z) for (z,g) € Z x, x» G (see for instance?, Definition 1.17]), we get a well
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defined continuous surjectigrf : A4 — Y given byp#([z, a]) := t(z). Furthermore, since
is Real, one has

p“(lz, a]) = p*([z. al) = t(z) = (z) = p%([z, a]).
Thus,p? : A4 — Y is a continuous Real surjection. Moreover, it is not hardhieak that
p? : A4 — T is open and the map — [z, a] defines a graded isomorphism frofy .
ontoAZ,, (see [L7, p.14]).

Proposition2.7.. Let G —= X and ' —= Y be Real groupoids. Suppose t@atI" — G
is a generalised Real homomorphism and tt¥t«) is a Rg Banact§-bundle. Then, with the
constructions abovey” : A4 — Y is a Rg Banach bundle. Furthermore,

oz, al ==y -z al, fore(z) = s(y), (4)
defines a Real leff-action on.A% making (A4, %) into a Rg BanacH -bundle called the

pull-backof (A, «) alongZ.
In particular, if (A, ) € BrR(G), then(A%, «?) € BrR(I).

The proof of this proposition is almost the same as thal éfProposition 2.15], so we omit
it.
Corollary 2.8. Let G —= X and ' —= Y be Real groupoids. Suppose tiat § — T
is a Real Morita equivalence. Then the m@ : @(9) — @(F) given by

D (A, &) == (A%, o) (5)
is a bijection.

The following construction is slightly modified froni, p.20].
Definition 2.9. Let (A, «) be a Rg (u.s.c.) Banacfbundle. Define theonjugate bundle
(A, &) of (A, x) as follows. LetA be the topological Real spageand leth : A — A be the
identity map. Thep : A — X defined byp(h(a)) = b(p(a)) is a Rg (u.s.c.) Banach bundle
with fibre A, identified with the conjugate graded Banach algebrd ofthe grading isﬁ; =
A—;,i = 0,1). Furthermore, endowed with the ReGaction by automorphismsg(b(a)) =
b(og(a)) forg € G, a € Ag(g), A — X becomes a Rg (u.s.c.) Banagtbundle. If (A, «) €
BrR(G), then(A, &) € BrR(S).

Definition 2.10. Let G —= X be a Real groupoid. Two elementd, x) and (B, ) in

@(9) areMorita equivalentif there is a RgQA—B-imprimitivity bimodule € — X which
admits a Rea§-actionV by isomorphisms such that
Asg(g) <Vg (&), Vg m)) = Xg (As(g) (€,m));and
<V9(EV)7V9(T])>BS(9) — Bg(<&7n>35(g))

forall g € G, and&, n € E4(g). In this case we writeA, o) ~ v) (B, B).

(6)
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Example 2.11.Suppose thab : (A, x) — (B, ) is an isomorphism of Rg D-D bundles over
9 —= X. Then(A, O() ~(B,B) (B, B)

Lemma 2.12. Morita equivalence of Rg DD-bundles ovey —= X is an equivalence rela-
tionin @(9).

Proof. The proof can almost be copied from that of Lemma 3.2Lif}.[ O

We are now ready to define the Real graded Brauer group.

Definition 2.13. Let § —= X be a Real groupoid.The Real graded Brauer group &f

I§r§(9) is defined as the set of Morita equivalence classes of Rg Dridlbs ovel§. The class
of (A, «) in BrR(G) is denoted byA, «].

Example 2.14.Let G be the one point s€k} together with the trivial involution. Then, every
Rg DD-bundle ovefx} is trivial; i.e. it is given by a Rg elementar@*-algebraX,,. We thus
recover the Real graded Brauer group of the pBiit (x) = Zg described in AppendiA.5.

Let (A, «) and (B, 3) be Rg DD-bundles. We have defined, in the previous sectian, th
tensor producd®xB which is a RgC*-bundle overX. We want to equip this bundle with a
RealG-actionx®p such thaf AxB, x®p) € BR(G). We defineax as follows. For all
ge g, we pUtO(9®Bg 1A5(9)®BS(9) — Ar(g)@)Br(g), a®b — ocg(a)®[59(b). Note that
from the definition of a Rea§-action on a RgC*-bundle, o, &4 is a gradedk-isomorphism
that clearly verifies conditions (b) and (c) of Definitidrl. Therefore, the same arguments used
in[17, pp.18-19] can be used here to show thatp is continuous; thus, its restrictianx 3 on
the closed subset®xB of A®B defines a Red}-action. Furthermore, this operation is easily
seen to be Morita equivalence preserving.

Proposition 2.15.Let § —= X be a Real groupoid. Theﬁrﬁ(S) is an abelian group with
respect to the operations

A, o + [B, B] := [ARxB, a®B]. (7)
The identity oBrR(G) is given by the class:= [X x C, T x bar] of the Rg D-D bundle defined
in Example2.4. The inverse ofA, «] is [A, &].

Proof. See Proposition 3.6 and Theorem 3.7 ][ O

For the sake of simplicity we will often use the following atibns.
Notations 2.16. We will abusively writeA for the clasd.A, «] in I§r§(9); we will also leave
out the actions when we are working in the gchTrR(S): for instance we will writed + B
instead oflA, o] + [B, B].
Lemma 2.17. Let (A, «) € @(9) and Iet(fJAcg, 0) be the Rg D-D bundle defined in Exam-

o~

ple 2.5 ThenA + Kq = A in BrR(S).
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Proof. Recall that the Red}-action is given byAdg, where® is the Realg-action on the
Rg Hilbert9-bundleiﬁ69 — X (see Exampl.9); i.e. 04(T) = @QT@gl. The Rg Banach
g-bundle(A&xA, x&0) provides a Morita equivalence

(A®xKg, a20) ~ (A, o)

in @(9) with respect to the point-wise actions and inner-produgigiby:

(aOT) - (b®E) = (—1)°"°abOTE, and
Ak (DO, dOm) = (=1)°5%9bd*OT y;
(bOE) - ¢ = bcdE, and
(bOE, dom)a, = (&, n)(x) - b"d,
forx € X, a®T € A &Ky, bOE, dém € A, &F(, andc € A,. O

Lemma 2.18.Let G —= X be a Real groupoid andA, «) € @(9). ThenA = 0 in

BrR(G) if and only if there exists a Rg Hilbeftbundle(.77, U) such thal A, «) = (K (), Ady)
in BrR(9).

Proof. If (€, V) is a Morita equivalence betweén, «) and the trivial bundl& x C, then each
fibre &, is a graded Hilbert space; and sirteis a full graded Hilberi4,-module and sincé is
a Rg Morita equivalence, there is an isomorphism of gradedlgebrasp, : A, — K(E4)
such thatey (4, (&, 1)) = Tey, forall &n € &, andgx(a) = @«(a) for all a € A,.
Moreover, in view of relationsd), we have

©r(g) (g (a4 (EM)) = @r(g) (A, (Vg (&), Vg(M))) = Ty, e, vgn = Adv, (Te ),
foreveryy € Gandg, n € Ag(g). It follows that the family( ¢, )xex is an isomorphism of Real
graded D-D bundle® : (A, x) — (K(€), Adv).
Conversely, using the same operations as in the proof of La&dv, the Rg Hilbertg-
bundle(.#, U) defines a Morita equivalence of Rg D-D bundles betwgkns#), Ady) and
the trivial oneX x C — X. O

From this lemma we deduce the following characterisatioMofita equivalent Rg D-D
bundles.
Corollary 2.19. Let(A, «)and(B, ) € @(9). ThenA = Bin §r§(9) if and only if there
exists a Rg Hilberg-bundle(.#Z, U) such thal A&xB, adp) = (K (), Ady) in BrR(G).

3. COMPLEX AND ORTHOGONAL BRAUER GROUPS

The aim of this section is to compare the grcﬁr\ﬁ{(S) of a Real groupoidg —= X we

defined in the previous section with the well-known gradechgiex and Brauer grouBAr(S)
of the groupoidg (see B, 10,22, 29]), as well as with a generalisation of Donovan-Karoubi’s
graded orthogonal Brauer grouprO(X) [8] mentioned in the introduction.
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Recall again that thgraded complex Brauer grouﬁr(S) is defined as the set of Morita
equivalence classes gfaded complex D-D bundlésover the groupoid. Moreover, there is
an interpretation o§r(9) in terms ofCech cohomology classes. More precisely, there is an
isomorphism

Br(9) = H°(S., Zs) ® (H!(S., Zs) x H2(S,,8Y)). (8)

For topological spaces, this group was denote@By™ (X) in Parker’s paperd2] and classifies
countinuous-trace separalilé-algebras with spectruiX.

In order to defingawistedK-theory, Donovan and Karoubi defined in their founding paj@r [
two groupsGBrU(X) andGBrO(X) respectively calledhe graded unitary Brauer grouand
the graded orthogonal Brauer grougf the spaceX. The former is just the finite-dimensional
version of GBr*(X), while the latter is the set of equivalence classegrafled real simple
algebra bundlesThey proved that

GBroX = H%(X, Zs) & (H'(X, Z2) x H*(X,Z,)) . (9)

We will define an infinite-dimensional analogue®BrO(X) for groupoids, and show later an
isomorphism analogous t8)(

We first give the following few results.
Proposition 3.1. Suppose thatg —= X is a Real groupoid which can be written as the

disjoint union of two groupoids5, —= X; and G, —= X, suchthatr(g;) € G,,Tt(g2) €
91,Vg:1 € 91,92 € 92. Then

@(9) = Br(9;) = Br(Ss).

Proof. Observe first that induces an isomorphis@y; = G,, so thatl§r(91) = I§r(92).

Let (A, x) € @(9). ThenA = A, & A,, whereA; — X; andA, — X, are graded
complex elementar¢*-bundles. It is clear that the gradgeactionx on A induces &;-action
o; onAi, 1 = 1,2, making(A;, «;) into a graded complex D-D bundle ovér. However, since
the projectionp : A — X; U X, intertwines the Real structure gf and that ofX, we have
a; € Ay anda, € A, forall a; € A4, as € A,. Indeed, over alk € Xy, the involution induces
the conjugate linear isomorphism

Tx :Ax = (-Al)x — -Ai = (-AQ)X-
It turns out that the Real structuredfinduces an isomorphism of graded complex D-D bundles

T (Ag, ) — (A, %)

over the groupoids. In fact(A, &) is isomorphic to the Rg D-D bund(el’, ') = (T"A, T x);
i.e. (A’, «’) is such that

1Elements oBr(G) are defined in the same way as thaB/of{(S) except that no Real structures are involved
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AL = (As)s, if x € Xy;
‘A7/< = ('Al)ia if x € XQ7 (10)
(Xél = g, - (‘AQ)S(Ql) — (-A2)r(g1]7 g1 € 91;

/

Xg, = Kgy * (‘Al)s(gg) — (Al)r(gz]a g2 € 9.
In fact, the same is true for every Rg Banach bundle gvéMow define the map

Dy : E?rﬁ(g) — §r(91)
A, o — [A, ],

@, is well-defined since ifA, x) ~ vy (B, ) In @(9), then the restriction&,, Vi)
of (&,V) over§; induces a Morita equivalence of graded complex D-D bun@kes «;) ~
(B1, 1) overG;. Moreover from the identificationd () we see tha® 5 (—[A, «]) = —D([A, «]).
Furthermore, we have clearji®xB); = Ai®x,B; for i = 1,2, and that the involution in-
duces an isomorphism of graded complex D-D bundlegx, Bs —» A;&x, B, = A1 ®x, B,
over G, —= X, , which showsD, is a group homomorphism.

Conversely, if(A;, «;) is a graded complex D-D bundle ovgr, we define the Real graded

D-D bundle(A, «) over§ by settingA := A, © Ty A, ando = o @ @; then we define
®!,: Br(S;) — BrR(9)
A, o] — A1 @ T‘*XQAM x1 D T|*92 o],

It is straightforward that,, and®1, are inverse of each other. O

Corollary 3.2. Let G —= X be agroupoid. Let the product groupoig x S%!' —= X x §%!
be equipped with the Real structurg, 1) — (g, F1). Then

BrR(G x S*1) = Br(9).
Proof. Apply Proposition3.1t0 § = (G x {+1}) U (G x {—1}). O

Example 3.3. The groupoid S! —= 8%! identifies with{pt} x {+1}. Thus from Corol-
lary 3.2we get

BrR(S*!) = Br({pt}) = Z,.
Definition 3.4. Let ¢ —= X be a groupoid. Agraded real®> D-D bundle (A, «) over S

consists of a locally triviaC*-bundlep : A — X, a family of isomorphisms of gradegl-C*-
algebrasxy : Asg) — As(g), such that

(a) the operationy - a := x4(a) makesA into aG-space with respect to the projectipn
(b) otgn = g 0 o, (g, h) € §;

Here "real” with a lower-case "r” is to emphasise that thediofA areR-C*-algebras.



GRADED BRAUER GROUPS OF A GROUPOID WITH INVOLUTION 15

(c) thecomplexificationAc, ac) of (A, «) defines an element of the coIIectia/fr(S) of
graded complex D-D bundles ovgr whereA¢: := A ®x C — X is the bundle with
fibre (Ac)x := Ax ®r C, and forg € G, (oc)g := ax ® Idc.

Definition 3.5. Let § —= X be a groupoid. Thgraded orthogonal Brauer grouB/r?)(S)

of G is defined to be the set or Morita equivalence classes of dreetd D-D bundles ovey,
where two such bundlgsi, «) and (B, p) are said to be Morita equivalent if and only if their
complexificationg Ac, ac) and(Bc, Bc) are Morita equivalent ir&%\t(S).

We will use the same notations Fﬁ(g) andB/r?)(S) as in Notation2.16
Theorem 3.6. Let G —= X be a Real groupoid.

(1) If the Real structure is fixed point free, then we have an isomorphism

Br(S) @ ZI[i/2] = (BrR(S) @ Br(9/<)) ® ZI[1/2), (11)
where G/ is the groupoid G/. —= X/. obtained from § —= X by identifying
every pointg € G with its image byr.

(2) It Tistrivial, then every elememt € BrR(G) is a2-torsion; i.e.

2A = 0.

Furthermore,E?ff{(S) = I§r?)(9). In particular, E?r?)(S) is an abelian group under the obvious
operations, the zero element being given by the trivial beXdx R — X with the G-action

g-(s(g),t) = (r(g), t).

We shall mention that property 2 was already proved by D.n&altin the special case of
Azumaya algebras with involution (se27] Theorem 4.4 (a)]). Our result extends his work to
infinite-dimensional Real bundles of algebras.

To prove Theoren3.6we need the
Lemma 3.7. Let (9, T) be a Real groupoid. Then the assignméft «) — (T°A, T°x)
defines a group involution

t: Br(g) — Br(9)
A — —T'A

such that the Real paBr(§). is isomorphic tdB/rE(S) after tensoring withQ; more precisely,

Br(S). ® Z%} = BrR(9) ® Z[%].

Proof. That T is a group homomorphism follows from the functorial progest the abelian
groupl§r(9) with respect t@g shown in [L7]. Now let

®c : BrR(G) — Br(9), A — A
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be the map consisting of "forgetting the Real structurest] ket

Oy : Br(§) — BrR(9)
A — A+ 1T(A)
That® is a well-defined group homomorphism is clear.
To prove thatDy, is well defined, we shall first verify th&l &y T A, a&T7x) € BrR(G) for
all (A, «) € %\t(S). Let o = (o0, )« be the family of conjugate-linear isomorphisms of graded
complexC*-algebrass, : A, ®A; — Ax®A, given on homogeneous tensors by

o (a®h(b)) := (=1)°*°°(bob(a)). (12)

Theno is a Real structure on the bundieoxt*A — X, and it is a matter of simple verifi-
cations to see that conditions (a)-(c) in Definit@i are satisfied whefA@x A, ot o) iS
equipped with the involutiow.

Suppose further thdtd, «) ~c vy (B, B) in @(9). By using the same reasoning we used
above for graded complex D-D bundles, one verifies that thdegt complex Banacg-bundle
(E@xT*E, VoT*V) admits a Real structure® making it into a Rg BanacB-bundle. Further-
more, this bundle implements a Morita equivalefd&x T A, a@T a) ~ (BxT*B, BT P)
in @(9). Moreover, since by definition

a7 (EOPM), E'Ob(")) = A, (& &) Oz (b(),b(")), and (EGH(M), E'ObM)) g o537

foreveryx € X, &, &', m,n’ € &, we see that the inner products = (-,-) and(-, )55 =5
of E&xT*€ intertwine the Real structures; hence we have a Morita edgrice

(‘A®Xﬁ7 XQT ) ~(E@xTEVRTV) (B@’xﬁ, BOTB)

in BrR(S), so thatdy is well defined.
@y is a group homomorphism sincﬁ/ﬁf(g) is an abelian group and singes linear;i.e. for
everyA, B € Br(9),

(A +2(A) + (B+2(B) = (A+B) + 1A+ B).

Let us verify that up to inverting, ®; and® are inverse of each other, whetx, is the
restriction of®y on the fixed pointSAr(S)R of 1. First observe that ifA, «) € @(9), then
the Real structure afl induces an isomorphisitd, ) = (T*A, T a) in %\t(S). Thus, for
A € E?rﬁ(S), we get(Dg o O¢)(A) = 2A. Suppose now thatl € I§r(9)R. Then(d¢ o
Dy)(A) = Oc(2A) = 2A, which completes the proof. O
Remark 3.8. Itis straightforward, by using Lemn7, that one has a similar characterisation
for graded complex D-D bundles as that of Corollar§9

Proof of Theoren8.6. 1. It suffices to show that the imaginary péEfr(S) with respect to
the involutiont : Br(9) — Br(g) of Lemma3.7 (i.e.,, the set of allA € Br(9) such that
T(A) = —A) is isomorphic toBr(G/ ) (after inverting2), and then we will apply40, Lemma
1.4].
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Assume(A, «) € @(9) is such thatt(A) = —A. Then thanks to Corollarg.19 there
exists a Rg Hilberg-bundle(.#, U) and an isomorphism of Rg D-D bundles

(T*ARxK (), Ta@Ady) — (ADxK (), x@Ady). (13)
We then obtain a Rg D-D bund(el/., ™) over G/. —= X/, by setting

A/ = AQXK(A)xK (T H), and & := a®Adu@Ad+u), (14)
with projectionp. : A/. — X/, given by
p-(aOTOT') = pla), for aBTOT € A QK () QK(H).

Next define the map
W.: 'BrR(S) — Br(9/.)
A — A/~

This definition does not depend on the choicé.af, L), for if (77, U’) is another Rg Hilbert
G-bundle such thatt* A xK ("), T*a@Ady) = (AxK ("), axAdy-), then putting

A’/ = ASXK (A XK (T ),

we get

A/T®X/T.A/—/T = A@xﬁ@x®K(<%Z®XT*%®X<%2/®XT*=%2/)
= K(%@Xﬁ@x’ﬁ%@x%“}éx’f*%/).
Moreover,K (7 &y s ox T H# &x 7' &xt* " defines a graded Hilbeg/.-bundle. Hence,
by Corollary2.19and Remark3.8we see thatl/. = A’/. in I§r(9/T). Y. is a group homo-
morphism by commutativity of the graded tensor product.

Conversely, denote by, : § — G/, the canonical projection. Then the pull-back of a
graded complex D-D bundleA, «) € %\t(S/T) is a graded complex D-D bund(el’, &) :=
(A, i) € @(9) which clearly verifie§ T A’, ') = (A’, &) in @(9) (this is because
for all x € X we haveA! = A.); sot(A’) = —A’ and.A’ € ’Br(G). Thus the pull-back map
7% induces a group homomorphism

Br(S/.) — ”Br(9)
A — A =mlA

k) .
e

Now, for all A € I§r(9/T) we have(miA)/. = A sincet'niA = miA and so that a
graded HilbertG-bundle.”# such that relation1(3) holds for the graded complex D-D bun-
dle (mtA, i) is the trivial oneX x C — X. This shows tha¥'; o ¥ = Id. Also, one clearly
hasmt o W, = Id, which gives the isomorphisﬁﬁr(gj) = I§r(9/T). From Lemma3.7, we
obtain the desired isomorphism1)).

2. We always havel + A = 0 in I§r§(9) forall (A, x) € @(9). Moreover, we have
already seen in the end of the proof of Lem®\& that the Real structure ofl induces an
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isomorphism of Rg D-D bundlesA, «) = (t*A, T «). In particular, ift : § — § is trivial,
we have(A, o) = (A, &); henceA = —A in BrR(S).

Furthermorey being trivial, each fibre afl is in fact a Rg elementarg*-algebra, and then
the complexification of a graded real element@tyalgebra.(A, «) is then the complexification
of a graded real D-D bundle ovér Conversely, every complexificatidil ¢, «c) of a graded
real D-D bundlg A, «) over§ is a Rg D-D bundle whose Real structure is carried outhiye.
a®prA:=a@rAforamgA € A, @z C. This process is easily seen to provide an isomorphism
BrR(9) = BrO(9). O

Observe that any Rg D-D bundiél, «) can also be considered as a graded real D-D bun-
dle (A,eat, ®rear) by forgetting the complex structure of the fibres. Moreotee, conjugate
bundle of realC*-algebraq A, cq1, %reat) identifies to itself. Hence, if the involutionof G is
fixed point free, we have*A,cq1 = T Areal = Arear, Which means thatA,cqr, drear) iS @
bundle of graded real elementaty-algebras over the quotient groupo@gl/. —= X/, . We
therefore have the

Proposition 3.9. SupposeG —= X is endowed with a fixed point free involutian Then
there is a group homomorphism

queal : B/r?{(g) — B/rT)(g/T)
obtained by "forgetting the complex structures” of Rg grdde-D bundles oveg.

Remark 3.10. Beware that,.. is not injective; indee®,cq1(A) = Wrear(A) for all A €
BrR(S), while in generald # A in BrR(9).

4. ELEMENTARY INVOLUTIVE TRIPLES AND TYPES OFRG D-D BUNDLES

In this section we define thigpe of a Rg D-D bundle over a Real groupoid. We start by
introducing few notions.

Definition 4.1. An elementary involutive tripl¢K, K, t) consists of a graded elementa?y-
algebrak, a gradedC*-algebraK — isomorphic to the conjugae*-algebra ofk, and a conju-
gate linear isomorphist: K — K~ of gradedC*-algebra. Such triple will be represented
by the mapt. Denote bys the collection of all elementary involutive triples.

A morphism fromt to t’ is the data of homomorphisms of gradéttalgebrasp : K — K/,
ande~ : K~ — K’~ such that the following diagram commutes

K —2— K’ (15)

L

~

K- 2~ K-
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Finally, we define the sum igt by:
t+t = (KK, K @K', t&t’).
Example 4.2.The Real structureBar” of JACO induces an isomorphism 5¢0 into its conjugate

algebra. We then have an elementary involutive trigle- (IJACO,CJACO, bar).

Definition and Lemma 4.3. Two elements, t’ € £ are said to bstably isomorphidf and only

if t + to Is isomorphic tat’ + tg; in this case, we writé =, t’. The set of stable isomorphism
classes of elements @fforms an abelian groulpvs under the sum defined above. The inverse
of t in InvR is the stable isomorphisms class of

A~

—t:= (K, K,t 7).

The class ot in Inv& will also be denoted by.
Proof. It is straightforward that + t' = t’ + t in InvR. Moreover, we have

t—t = (K&K, K @K, t&t™!) = (KK, KK, t),
via the isomorphisnild; .z, ¢'), wherep’ : K-®K — K&K~ is the canonical isomor-
phisme’(TRT’) := (—1)°T°T'T'QT, andt’ := ¢’ o (t&t!). Thus,t — t =, t,. O

We can recover the gromﬁﬁfrﬁ(*) from InvR. More precisely, suppoge= —t, and
(@, 0") : (K&K, K~ &Ko, t&bar) — (K~ &K,, K&Ko, t *&bar)

is an isomorphism. Thenrp’ o (t®bar) = (t~'®bar) o ¢ is a Real structure on the graded
elementaryC*-algebraK&X (). Moreover, if (o, @/) is another isomorphism, it is easy to
check thatp’ o (t@bar) and @/, o (t&bar) are conjugate, hence define the same element of

BrR(x). Conversely, any Real graded elementdtyalgebra is obviously a-torsion ofInv .
We then have proved the following

Lemma 4.4. The grou;B/rE(*) is isomorphic to the subgroup bfv of elements of ordet.

Now let us return to the study of Rg D-D bundles over Real goids
Proposition 4.5. Let (A, ) € @(9). Then each fiberl, gives rise to an element' <
Inv, and the familyg := (t2),cx defines a cohomology classhtR’(S,, InviR). This process
defines a group homomorphism

t: BrR(S) — HR(G., InvR),
which is surjective.

Proof. Denote byo the Real structure ofl. Over allx € X, there is a conjugate linear iso-
morphism of graded"*-algebraso, : A, — Ax. Then the graded elementary (complex)
C*-algebrasd, andAj are of the same parity. LétL, ¢) be a local trivialisation of the graded
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elementary complex*-bundleA such thatl = (U;) is a Real open cover &f. Then the iso-
morphismsp; : U; x K; — Aju, induces a family of graded isomorphisms : K, — A,.
Thent, := (K, Ky, t.), wheret, := @5 o Ty o @y, is an element ofv, and the assignment
X 3 x —> t, € InvR is a locally constang-invariant Real function. Indeed, tifeinvariance
(i.e.tr(g) = te(g) in Invi for all g € G) comes from the commutative diagram

—1

~ Ps(g) Xg Prig) A
Ks(g) As(g) Arg) — Ki(g)
Lts(g) lﬁsm) ‘(Ur@ tr(g)l

®s(g) og Or(g)
Ks(q) Astg) Ag Ks(g)

Moreover, sinces is a continuous functiont” : X 3 x — t, € InvR is locally constant.
Hencet” € HR%(S,, InvRk).

Thatt? = —t* andt”*+® = t* +t2 is clear from the definition of the sum and the inverse in
Inv&, and from the definition of the conjugate bundle and the tepisamiuct of Rg D-D bundles.
Observe that from the constructioni?ifg, tXs = ¢, =0 sincefJAcg = [Jeex X(L2H(GY) ® Ko
with involution given bnyACX 20T +— 1(e) ®Ad),(T) € X.. Thus, ifA = B in
BrR(S), we have (thanks to Lemnfal7and Lemma.19 A+ B + Kg = K(Hg&xH#) = 0;
hencet*~® = t4 —t® = 0, which shows that : BrR(S) — HRC(G., Inv&) is a group
homomorphism. It is surjective since for alE HR?(G,, InvR),

Koo = [ [ KubKi, (16)
xeX
equipped with the obvious involution agdaction, defines a Rg D-D bundle over O

Definition 4.6. For (A, ) € @(9), the element* of Propositiord.5is calledthe type of
(A, «). The homomorphism: BrR(G) — HR(G., InvR) is calledthe type map

Definition 4.7. A Rg D-D bundle(A, «) is said to beof typei mod 8 if t* is the constant
functiont” = 1 € Zs C Inv&. By BrR;(G) we denote the set of Morita equivalence classes of
Rg D-D bundles of typé mod 8 over G —= X . Next, we define

7

BrR.() = D BrRi(9).

i=0
Example 4.8. Let K be, as usual, equipped with the Real strucﬂq{eTheanACO — -isaRg
D-D bundle of type) over ﬁj(ff{) —= ., where the Reaﬂ)/fj(ﬁ)-action is given byAd; i.e.
[ - T:= Ady(T), for [u] € PU(F) = At (K,), T € Ko.

We have the following easy result which shows that the stdd§r§(9) reduces to that of
Rg D-D bundles of typ®.



GRADED BRAUER GROUPS OF A GROUPOID WITH INVOLUTION 21

Proposition 4.9. Let § —= X be a Real groupoid. Th@/ff{O(S) is a subgroup oB/rﬁ(S).
Furthermore, the group sequences

0 — BrRo(S) —% BrR(G) —% HR°(S,, InvR) — 0 (17)
0 — BrRo(G) —% BrR.(G) — HR(G4, Zs) — 0, (18)

wherey, is the inclusion homomorphism, are split-exact. Therefaeehave two isomorphisms
of abelian groups

BrR(S) = HR(S., InvR) © BrRg(G), and BrR.(G) = HR"(S., Zs) @ BrRo(S).

Proof. We only prove the first sequence, from which we deduce thenskeooe. It is clear
thatt o i,y = 0 andy, is an injective homomorphism. We also proved in Proposiidithatt
was surjective. To show the sequence splits, we only haverifyvthat the correspondence
t — 9A<97t, WherefJACgt — X is the Rg D-D bundle given bylg) defines a group ho-
momorphismHR%(SG,, Invk) — E?rE(S). This is immediate from construction: we have
J/%&H_t/ = J?g,t®x§<97t/, and a routine verification shows that any isomorphisnto t’ +t0
induces an isomorphism of Rg D-D bundlﬁ§ ttto = J<9 Uty SO thatKg ¢ = JCg ¢ N BrR(S)

if t ~; t’. Also from the definition of-t, we havng P ng ¢ = —Ith Finally it is obvious
thatﬂ<97t is of typet. O

5. GENERALISED CLASSIFYING MORPHISMS

Let  be the usual Rg Hilbert space with the involution inducedHgydegre® Real struc-
tureJor ON H (see Appendix A). Let the algebia(() of bounded linear operators 6t be
endowed with the obvious grading and the Real struciiite) := T(h) T € L(H),h € H.
Denote byﬁ( ) the group of all homogeneous unitariesdfi() (i e. unitaries of degree or
1) [22] equped with the Real structure inherited from thatéf(). Next, we define the Real
groupPU( ) to be the quotlenU( H)/St, whereS! is glven the the Real structure defined by
complex conjugation (it is obvious that the actiorSdfon U( ) is compatible with the involu-
tions).

In this section we are restricting attention to the clas®iefRg D-D bundIQfJACO, Ad) of type

0 over the Real groupoicP/I\J(ffC) — whereﬁfj(ﬁ) Is equipped with the compact-open
topology and

Definition 5.1. Let (A, @) € @(9) of type0. A generallsed classifying morphls‘m (A, x)
is a generalised Real homomorphigm § — PU((H) such thaf A, o) = (IKO ,Ad") as Rg
D-D bundles.



22 EL-KAIOUM M. MOUTUOU

Remark 5.2. Note thathAC‘g = P Xg5 CJACO =P x IJACO/N, where the equivalence relation is

(@, T)~ (¢ -[ul,u1-T)for [u] € PU( ). The RealG-action by automorphisms is given by
the Real (left)g-action onP.

Before going on the study of generalised classifying mais, we shall say something
about generalised Real homomorphlsﬁns—> PU(:H) First of all, recall from PO, Remark
2. 50] that although the Real gromI[tU( ) is not abelian, it still is possible to define Real
PU( )-valuedCechi- -cocycles over any Real groupcﬁdhence to form the sétRl(S.,PU(fH))
and we have a set-theoretic bijection betwé’éﬁ(S., PU( )) andHomyes (9, PU( )).

What's more, when identified witHomme , (G, PU( )), the setlomgg e (G, PU( )) admits
the structure of abelian monoid defined as follows. Fix amisghism

HOH — K
of Rg Hilbert spaces. Then the map
PU(H) x PU(H) 3 ([wy], wy)) — [w &) € PUHEH) = PU(K)
is a Real a homeomorphism, where the unitayypus, is given onH&H by
(W1 OUy) (E18Es) i= (—1) M2 Oy (&) R (&s).

Givenpy, p2 € Hompe,, (9, PU(§C)), we may, without loss of generality, assume that they are
represented on the same open Real cbivef X; i.e. p1,ps : §[Ul — PU(XK) are strict Real
morphisms. Henceforth, the map

pi&ps: SUl — PU(H)
y—  pilv)opa(y)
becomes a well defined strict Real homomorphism. Thereferaave:

(19)

Definition and Lemma 5.3. For [P,], [Py] € Homge (S, PU(F()). We define the sum

[P1] + [P2] := [P; ® Py,

whereP; ® P, is the generalised homomorphism frojv—= X to ﬁj(:ﬁc) ——= . obtained

by composing the corresponding morphignp, € Homm@Q(S,ﬁJ(ﬁ)) with the gener-
alised Real morphisminduced by a canonical Morita equinadg ~ G[U]. ThenHomgpye (G, PU(H))
is an abelian monoid with respect to this operation.

Remark 5.4. The same reasoning applies to the Real grbiiffi(): the operation of tensor
product of cocycles makes the S@bmmpe (S, U%(H)) = HRY(G,, U(H)) into an abelian
monoid. Similarly the corresponding operatiorHnmge (G, U°(H)) is denoted additively.

We list few properties for generalised classifying morpigs
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Proposition 5.5. If P; andP, are generalised classifying morphisms fat;, «;) and(A,, ),
respectively, the?; ® P, is a generalised classifying morphism for the Rg tensor pcbd
(A1®XA27 061®062)-

Proof. Up to considering the pull-back ofl;,i = 1,2 along the canonical Real inclusion
g[Uu] — g, we can suppose that tfé;, «;) are Rg D-D bundles over the Real cover groupoid
g[ul, wherelU is an open Real cover on which the morphismse Homm@Q(S,ﬁj(ﬁ))
corresponding td@; are represented. The isomorphisful, ;) = (JAC‘ODi,AdPi) mean that
the pull-back(p JCO,p*Ad) is isomorphic to(A;, «;),i = 1,2. We thus have reduced the
proposition to showing that

(A1Ov A, Q) = ((P1®P2)*9A<o, (p1®p2)*Ad),

whereY = [ [, U;. But this is clear by using the functorial property@( ) in the cate-
goryR&, of Real groupoids and strict Real homomorphlsms and theasphism of Rg D-D
bundles(ﬂc(]@ IKO, Ad®Ad) = (CKO, Ad) overPU(fH) O

Proposition 5.6. SupposeZ : I' — § is a generalised Real homomorphism. Ldt «) €
BrR(9) be of typed. If P is a generalised classifying morphism fof, «), thenP o Z is a
generalised classifying morphism fofl%, «?) € BtR(T).

Proof. This is a consequence of the cofunctorial propert@(-) in the categoryRi®: i.e.
A = XP impliesAZ = (KF)% = KPoZ, O
Proposition5.7. Let(A;, «1), (As, s) be isomorphic Rg D-D bundles of typever G —= X .
If P, andP2 are generalised classifying morphisms fak;, o, ) and(A,, «, ), respectively, there
exists a@—PU( )-equivariant Real isomorphisiy = P,.

Proof. Let f; : Ay — Pi X5 CKO, =1,2,and¢ : A, — A, be isomorphisms of Rg
D-D bundles. Them := f5 o q) o f : P1 X504
of Rg D-D bundles ove§. P, — X andP, — X belngPU( )- prlnC|paI bundles, it follows
from the theory of prlnC|paI bundles (see for instance HudeM[13, §4.6]) that there exists an
isomorphism oiPU( )- prlnC|paI bundles : P, — P, overX such thah([¢@, T]) = [f(@), T]
for all [, T] € Py x BO(90) IKO. Moreover,f must be Real sincé is. Also, sinceh is G-
equivariant, we havh([g @, T]) = g-h{le,T]) = g [f(e), T] = [g- f(e),T], so that
(f(g- @), TI=1g-f(e), T,Vie, Tl € Py XE0(50) IJACO. f is thus an isomorphism of generalised
Real homomorphism®, = P, : G — PU(F). ]

CKO — Po Xp5.4¢ IKO is an isomorphism

From Propositiors.7we deduce the following
Corollary 5.8. If there exists a generalised classifying morphism(fér«) € Bt9R(3G), then
it is unique up to isomorphisms of generalised Real homomsinps.

The existence of generalised classifying morphisms is éinéent of the next section.
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6. CONSTRUCTION OFP

It is known [29] that graded complex D-D bundles are, in some sense, ckbdf the
groupoid lgfj(fﬁC) —= . ;i.e. giving a graded complex D-D bundi over§ is equivalent to
giving a generalised morphishhe Homg (G, ﬁJ(fﬁC)), where® is the category of topological
groupoids and isomorphism classes of generalised morghismview of the isomorphism
established in Lemma.7, it is natural to expect a similar correspondence in thegrateof

Real spaces. We show that tﬁeaquwarlantPU( )-principal bundle associated to a Rg D-D
bundle admits a natural involution turning it into an elemardomgg (G, PU(:H)), where the

Real groupoidﬁfj(ff{) —= . is given the compact-open topology (which is equivalenhto t
*-strong operator topology) and the usual involutiody,, .

A Rg D-D bundle(A, x) € @(9) being of typeO means that the fibred, are isomor-
phic to the graded complex elementary- aIgebraJCev — K (%K), and there is a Real local
trivialisation (U, @;);ej with commutative diagrams

h; ~
A, — Uy x Ko (20)

Tu; [ lTXbaT
hs

.A\u; — U]T X J/%o

and a Real family of continuous functian; : U;; — Aut'® (X,) = PU(%), over every
non-empty intersectiobl;; = U; N Uj, such that the homeomorphism

hiOh;liuing%Q%uinjzo

sendsx, T) to (x, a;;(x)T). Observe thata;;) € ZR' (U, lgfj(ﬂ)). We then obtain the "Real”
analogue of the well knowBixmier-Douady clasgsee [], [25]). Furthermore, we get a Real
PU( )-valuedCech 1- -cocyle i over G as follows. From the Real open covér= (U;);¢;
of X, form the Real open covét, = (U . ) of G by settingU, ., ={g € §|r(g) €
U;,,s(g) € Uy, } ([20, §2]). Using the isomorphism of RG*-bundless*A — r*A over§
induced by the Redj-actionx and the commutative diagrara@), there is a Real family of

continuous functiong, ;,) : U, ;| — Aut® (K,) = PU(F() such that

(21)

(Gosi1)

u(jOJl)(g) = th"r(g) 0 Kg O h]_l|1 Vg € ul

wherehy ot Avg) — {r(g)} x JCO, andhy, |, {s(g)} X fKo — Ag(q) are the restrictions

of the |somorphism$1j0 P A U X Ko andh; ' @ U, x JCO — A
(Gosi1 (Go-j1

It is easy to verify thap* = (15,,)) is a Reall-coboundary. We are going to show that

the generalised Real homomorphism corresponding to tiss o in HR!(G,, PU(H)) is

actually a classifying generalised morphism fdr, «).
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We first need some further constructions. kar X, let P, := Isom® (X, A, ). Put

P=]]P (22)

xeX

Forg € Gandp = (s(g), @) € Py(q), theG-actionx of A provides the elemenf-p € P, ()
given by

g-p:=(r(g), xg0 @). (23)

We wish to define a topology dhsuch that not only the canonical projectibrs (x, @) —
x € X is continuous but also the formul@23) defines a continuous action §fon P with
respect to the projection just given. To do so, we first carside pull-backs*P — G and
P — G of P — X along the range and source maps. Then we look at the fibeoellr
$*P xg P — G.
Lemma 6.1. TheG-actionx of A induces a (set-theoretical) embedding

S*P xg 1P — G X ﬁJ(U:C).

— ~

Proof. If ((g, @), (g, 1)) € s*P xg P, thenp ' o ag 0 @ € Aut'”(X,) = PU(H). Itis
straightforward to see that the correspondence

$*P xg 1P — lesfj(ff)
((g,9), (g, ¥) +— (g, b ' ogo)

is a well-defined injection map. O

Definition 6.2. Let (A, ) € @(9) of type 0, and letP be given by 22). Let the space
s*P xg r*P be given the topology induced from the product topologys ot PU(H) via the
embedding of Lemm@&.L Then we endow with the topology induced from the embedding

P < s"Pxgr'P
(x, @) — ((x, @), (x, )

In this way,P is looked at as a subspace®k ﬁj(fc).

From this definition, it is obvious that the projectiBr— X is an open continuous map with
respect to which the formul&8) defines a continuoug-action onP. Moreover,P is a Real
g-space with respect to the involuti®ns (x, @) — (X, @), where forg € Isom(o)(ﬂACO,Ax),
the isomorphisnp is defined byp(T) := ¢(T) forall T € Ko.

Proposition 6.3. Letu € U(F) and [u] its class in the groufPU(%). For ¢ € P, we put
@ - [u] := @ o Ad,, € Px. Thenthe map > (x, @) — (x, @ - [u]) € P defines a principal
Real PU(%)-action onP compatible with théj-action with respect to the projectidh — X.
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In other words, we have a generalised Real homomorphism

P—s.

|

X
fromg to ﬁJ(ff{).

Proof. The continuity of the ma@U(5) x P > ([ul, (x, @) — (x, ¢ - [u]) € P is a direct
consequence of the construction of the topology oft respects the Real structures since for
all T e X,

@ - [u(T) = @(uTu=!) = @ 0 Adu(R) = @ 0 Ada(T),= (@ - [W)(T).

It remains only to check that thEAU(iﬁC)-action is principal (cf. 20, §1.2], [30Q]), which is
straightforward since the mapx PU(H) — P xx P given by

((X7 (p)a ['LL]) — ((Xa (p)a (Xa (2 ['LL])),

has inverse given by(x, @), (x,1)) — ((x, @), @ L o). O
Proposition 6.4. The class ofP] € Homme (G, PU(H)) in HR'(G,, PU(H)) is u#, the latter
being given by21).

Proof. The Real local trivialisationiLl;, h;) of (20) gives rise to a Real family of local sections
sj: Uj — Psuchthas;(x) = h;' € Isom'” (X, Ay). Forg € Uf; ; |, we haveg~h]._l‘1$(g) =

®g O hills(g)’ henceg - s, (s(g)) = sj,(r(g)) - K(,,5,), Which proves the result. O

Proposition 6.5. Every Rg D-D bundléA, «) of type0 over G —= X admits a generalised
classifying morphisn®(A). Furthermore, the assignment

[P +— A([P]) =P x50, Ko
induces a well defined surjective homomorphism of abeliamang

A : Homgpe (Ge, PU(H)) —  BrRo(9). (24)

Proof. Let P : G —» PU(H) be the generalised Real homomorphism defined22y. (Then
the family of fibre-wise maps

P X&590) Ko 3 ((x, @), T) — @(T) € Ay

is an isomorphism of Rg D-D bundles ovgr ThereforeP : § — ISI\J(}U is a generalised
classifying morphism fofA, «). The uniqueness df is guaranteed by Corollaiy.8.

The mapA is well defined since an isomorphism of generalised Real moonphismd® = P’
obviously induces an isomorphism between the associate®-Rgbundles. It is a homo-
morphism of abelian monoids, for iP], [P'] € Homm@(S,lgﬁ(ﬂ:C)) then, thanks to Proposi-
tion 5.5 and the uniqueness of the generalised classifying morpttsmP’ is a generalised
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classifying morphism for ([P])&xA([P’]) and for A([P] + [P’]) at the same time; so that
A(PP']) = JA<‘0°®P' = A([P])®@xA([P]), which impliesA([P] + [P’]) = A([P]) + A([P]) in
I§r§0(9). The surjectivity ofA is a consequence of the existence of the generalised glagsif
morphism we just proved. O

Remark 6.6. Let X be a locally compact Hausdorff space. Recall that AtiyahSeghl defined

in [3, pp.11-12] the monoidroj*(X) to be the set of infinite dimensional projective graded
complex Hilbert space bundles éhsubjected to the operation of graded tensor products, and
showed that as a sétyoj*(X) = H'(X, Z,) x H(X, Z). If X is endowed with a Real structure

T, thenHompgs (X, ﬁj(ff{)) is nothing but the Real analoguelfoj™ (X). We thus may expect

to have a similar result as in the complex case; this will lIsew$sed in the next sections.

7. INTERMEDIATE ISOMORPHISM THEOREM

Consider once again the abelian mondidsng; s (9, U () andHomes (G, PU( K)). There
is a canonical monomorphism

pr: Hompe (G, Uo(fff)) — Hompge (G, ﬁj(fﬁf))

induced by the canonical Real projection() —s PU(%): i.e, if U: § —s U(H) is a
generalised Real homomorphism, then we obtain a genetdisal homomorphism

proU:=1U Xyo4 PU( ):§— PU(fH)
Definition 7.1. An element[P] ¢ Homm@(g,lgfj(%)) is calledtrivial if [P] = [pr o U] for
someU : G —s U°(H).
Define an equivalence relation Hompyes (G, PU( )) by saying thaP;,P,: § — PU(}C)
arestably isomorphidf there exists a trivial generalised Real homomorphé@rsuch that

[P1] + [Q] = [P2] + [Q].

In that case we writ@P,] ~.; [P»]. We define

Hompe (G, PU(H)) st := Homme (G, PU(H)) /...

The class ofP] with respect to %,,” is denoted by{P];
Lemma 7.2. [P]is tr|V|aI if and only if P is the generalised classifying morphism of a Rg D-D
bundle of the formiX (), Ady) where(Z,u) is a Rg Hilbertg-bundle.

Proof. AssumeP = pr o U is trivial. Let [w] € HR'(X, U ( )) be the class of the Real

UO( )-principal bundleU — X, and let[c] € HR!(S., U°(H)) be the class ofJ as Real
U°(%)-principal G-bundle. Suppose, without loss of generality, tHat= (U j)jey Is a Real

open cover ofX on which w is represented, and such thais represented on the Real open

coverl, = (u1]0 i) 1)jojrey- Then we get a Rg Hilbe§-bundle(.#, u) by setting:

A =TT x 3, (25)

j€]
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whereU; x H 3 (x,&) ~ (x,wi;(x)&) € W x K if [x, &]; denotes the class i of
(x,&) € Uj x H, we define the Real structupe &l — [x, E,]]f (where as usual the "bar” it
is the Real structurf ), and the projectiomn : A —s X by n([x, &lj) = x; the Realg-action
Uis

ug([s(g),i]il) = [T(g)7c(j07jl)(g)E‘]jO' (26)

By construction, we see thatr o U = U x 04, JACO Is a generalised classifying morphism

for (X(), Ady) and that the clasg® ) (recall @1)) in HR'(G, PU(H)) is Ad., where

(Adc)(jo,h] = Adc(io’h)' A A
Conversely, a Rg Hilber§-bundle (#, U) gives rise to a clasiv] € HR!(G,, U°(H)),

hence to a generalised Real homomorphtgmg — U°(H). It follows from Propositioré.4

thatproU:§ — ISI\J(ffC) is a generalised classifying morphism {6€(#), Ady); therefore

P = pro U by Corollary5.8 O

Lemma 7.3. Homm@(S,lgfj(}AC))st is an abelian group with respect to the sum; the inverse
of [P]s¢ is [P*]s¢ whereP* is the generalised classifying morphism for the conjugaiedbe of
A([P]).

Proof. We only need to verify the existence of the inverBex P* is a generalised classifying
morphism for the Rg D-D bundlé ([P])®xA([P]). From Corollary2.19, P ® P* is then a
generalised classifying morphism fok (7)), Ady ) where(2,U) is a Rg Hilbertg-bundle.
Therefore [P ® P*] is trivial, by Lemma7.2 O

The main result of this section is the following
Theorem 7.4. Let G —= X be a Real groupoid. TheBrR,(S9) = Homxe (9, PU(H)) st

The proof is based on the following lemma (compare wit§ p.3]).
Lemma 7.5. The sequence of abelian monoids
0 — Homaze (G, U°(3()) = Homme (5, PU(H)) 5 BRo(§) — 0 (27)
IS exact.

Proof. We have already seen that was a monomorphism of abelian monoids, @ndas an
epimorphism of abelian monoids. It then remains to showkfat = Im(pr).

Im(pr) C ker A: indeed, from Lemmd.2and Corollanys.8, for all [U] € Homps (G, U°(H)),
the Rg D-D bundlé\([proU]) is of the form(K(7), Aduy), henceA ([proU]) = 0in E?rﬁo(S)
by Corollary2.19

ker A C Im(pr): if A([P]) = 0 thenP is the generalised classifying morphism for some

A~

(K(s2),Ady). So, by Lemm& .2 [P] is trivial; in other words[P] = [pro U] € Im(pr). O
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Proof of Theoren?.4. First of all, observe that there is a canonical isomorphisrakelian
monoids
Homae (G, PU(5())

: = Homue (5, PU(%0)st,
m(pr)

the quotient monoid is then an abelian group. Moreover, ftbenexact sequencq) we
deduce an isomorphism of abelian monoids

2 : BrRo(S) — Homge (G, PU(H)) e,

such that#?(A) is the class itHomg (9, ﬁfj(:ﬁ())st of the generalised classifying morphism
P of (A, «). Furthermore, by definition of the inverselifomg g (9, P/’I\J(iﬁC))st, we see that this
isomorphism respects the inversion; it therefore is an @pmsm of abelian groups, which
completes the proof. O

8. EXAMPLE: CASE OF AREAL GROUP
Here we apply the observations of the previous sectionsrtpate the Rg Brauer group of
a locally compact Real grous —= - .

If § = G —= . is aReal group, then for any Real grofipHomu (G, S) identifies with
the setlom (G, S) of continuous Real group homomorphisms frénto S. In particular

Hom(G, PU(%())x
Hom(G, U°(H))x

II2

Homm@ (G, ﬁj(g:(j))st

For instance, ifG is equipped with the trivial Real structure, then

Hom(G, ISI\J("}ACR))
Hom(G, U%(Hg))

Il

Homm@ (G, ﬁj(g:(j))st

Moreover, a Rg D-D bundle oveG —= - is obviously of constant type since it is given

by a Real bundle over the point together with a Real actio@;afo I§rT3L(G) = @*(G). Itis
convenient to writeBrRg (+) instead ofB/rE(G) since it is exactly the Rg Brauer group of the
point with the trivial RealG-action. Similarly, we writéf()G(*) andl§rG(*).

Now, applying Propositiod.9and TheorenY.4to G, we get

Proposition 8.1. Let G be a locally compact Real group. Then

Hom (G, ISTJ("}ACR))
Hom(G, U(Hg))

Hom(G, ISI\J("}AC))R
Hom (G, U°(H))x

BrRg (%) = Zs ® ., BrOg(x) = Zs ®
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9. THE MAIN ISOMORPHISMS

The purpose of this section is to prove the following thearem
Theorem 9.1. Let § —= X be a Real groupoid. Then

BIR(S) = HR'(G.,Invi) & (HR'(Gs, Z2) x HR?(S., 1)) ;
BrR.(S) = HR(S.,Zs) & (HR'(G.,Zs) x HR*(S,,Sh)) .
We first deduce a generalization of Donovan-Karoubi’s isgghism Q):
Corollary 9.2. Let G —= X be a groupoid. Then
BrO(9) = H'(Su, Zs) ® (H'(Ge, Zo) x H3(S4,Z2)) .

Proof. This follows from Theoren8.6 2), Theoren®.1, and the fact that whe§ is given the
trivial involution, HR™(SG,, S') = H™(S., Z,), thanks to PO, Proposition 2.43]. O

The proof of Theoremd.1is divided into several steps that mainly consist of cortsiing an
isomorphisnmHommes (G, PU(H))s = ExtR(S, S1).
Let us consider the following "generic” R§'-central extensioti;. of the Real groupoid

PU(F) =—= -

St — U (%) ——= PU(%K) (28)
la
Z

whereod([u]) is the degree of the homogeneous unitary

Let § —= X be a Real groupoid and I& : § — ISI\J(}U be a generalised Real ho-
momorphism. Then we get a Rj-central extensio®*E of § by pulling backE. via P
(see RO, §1]).

Lemma 9.3. The assignmerft — P*Ej_induces a well defined homomorphism of Abelian
monoids

—

7 : Hompe (9, PU(H)) — ExtR(S,S")
[P] — [P*Eg |

Proof. AssumeP = P’ are isomorphic generalised Real homomorphisms ffota ISI\J(}AC).
As usual, we may assume tiaandP’ are represented iHomgyes, (G, PU(H)) (see RO, §1])
on the same Real open covénf X by two Real strict homomorphisnfs U] —s PU(H)

andf’ : g[U] — ISI\J(}AC), respectively. The pull-back¥"Ez. and(P’)*EjACO are then Morita
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equivalent to

and

~ A

Sl - U(}C) Xpnﬁﬁ(j{)’f/ S[U] - g[u]
laof’
Ly

respectively, where in both cases, the projection is themiaal one onto the second factor.
SinceP = P/, there is an isomorphism of Real groupoidgls U] — G[U] such that’ = fod.
Therefore, the map

A~ ~

U(H) %, 55050, S — U(H) <, 55000 S

defined by(u,y) — (u, ¢(y)) induces an isomorphism of R&j-central extensiof*Eg. =
(P')*E,. HenceZ is well defined.

Let us check tha? is a homomorphism. LéP;], [Py] € Homgpxes (G, ISI\J(}AC)) and letpy, ps :
S[U] — PU(K) be Real strict homomorphisms representig and[P,], respectively in the
categoryR® . Then the map

(0050 %y 55300 I X500 (TF0) X 0 55050, D)) = TIHETO R 55 50850, S
defined by
((ur,y), (12, 7)) — (W QU v),

is easily checked to define an isomorphism ofRecentral extensions
(PTE&O)é@(P;EﬁO) = (P1® P2)"Eg, -
Thus, 7 ([P1] + [P2]) = Z([P1]) + 7 ([P2]), and we are done. O

Lemma 9.4. If [P] is trivial, then.7 ([P]) = 0 in ExtR(G,S!). Therefore,Z induces a homo-
morphism of abelian groups

Homge (9, PU(F0)) s, — EXR(S,S"),
also denoted by .

Proof. Since.7 ([P]) depends only on the isomorphism classPofit suffices to suppose =
pr o U for some generalised Real homomorphim G — U°(H). Letu : G[U] — U°(H)
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be a Real strict homomorphism represenfihgh the categoryR® . Then the Real groupoid
morphismp : §[U] — PU(H) given byp(y) = [u,] represent®. It follows that the map

S — U0 x,,, o050, p S
y +— (uy,v)

is a well defined section of the projection((pf*lgfj(f}AC), g[Ul, 9 o p); the latter is then a strictly
trivial Rg S!-twist [20]. ThereforeP*E5 is atrivial RgS!-central extension df. OJ

At this point, we are following closely30, §2.6] to construct a homomorphis#’ in the
other direction; and then we will show th&at and.#?’ are inverses of each other.
LetE = (T',T, 8, Z) be a RgS*-central extension ofg —= X .

Definition 9.5. ([30, Definition 2.37]). A functior¢, € C.(N)is saidS!-equivariant if§ (Ay) =
ALE(y) foranyA € St and anyy € T.

Let u = {WY},cv be a Real Haar system of the Real groupdid—=Y . Fory € Y,
consider the graded Hilbert spatg := L2(T'Y)$' consisting ofS'-equivariant functions of¥
which arel? with respect tou¥. Note that theZ,-grading ofL% is the one induced by; i.e.,
for & € C.(TY)S', definedé by

(88) (V) := (—1)°ME(y), (29)
wherey € T is such thatt(y) = y. Let
A, =L @K, and A =[] A, (30)
]

where, as usudll = 1*(N) is the generic separable infinite dimensional Hilbert spacdowed
with the Real structurgz given by the complex conjugation with respect to the caraifiasis.
Then the countably generated continuous field of infiniteesigional graded Hilbert spaces
j‘?ﬁ — Y, is a locally trivial graded Hilbert bundle, and hence tivihanks to T, Théoreme
5]. By identifying jfﬁy with the space

LY 30 = {£ € Ce(TY; 30) | EN) =N 'E(7), VA €S,y € TY),
we define the Real structure o#- by

My 2 & L€ Ay, (31)

where&(y) := &(¥) for all v € TY. Together with this involution,%;j: is clearly a Rg Hilbert
bundle overy.
Fory €Y, let %, = U(3, 2 ) UU' (3, # ) be the space of homogeneous unitary
operators frond{ to ./ . Put
U =] %,

yey
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The field%} is endowed with the topology induced frog: a sectiony Yyr—r Uy € %Aﬁy

is continuous if and only if for every, € 3, the mapy — uyAE i§ a continuous section of
6 — Y. The bundlez= — Y is, in an obvious way, a Real(J()-principal bundle, with
the Real structuré’/ﬁIJ Sur—ue %ﬁg, where for§, € H, u(&) .= u(é) € j‘fﬁg. Notice
that scalar multiplication with elements of the fibl@:%y induces a Re&d!-action on%:. It

follows that its quotient
P% = U-/S" (32)
is a ReallSI\J(f}AC)-principal bundle ovelr. We write [(x, u)] for the class ofx,u) € %}79 in
the quotient?%;.
One defines a Real left-action onP%= — Y in the following way: lety < T and
[(s(v),u)] € P%:, theny - [(s(g),u)] is the clasg(r(y),y - u)] of the elementr(y),y-u) €

~

U (), Where for eachi, € (, the function(y - w)& € L2(I'"¥); 50)5" is given by
(v W& : T 5 h— (ug) (¥ 'h),

wherey € Fy is any lift of v with respect to the projectioﬁ — T'. Itis easy to verify that
with respect to this well defined Real actidh?/} is a RealPU(%)-principal bundle over the
Real groupoidI' —= Y, in other words, it is a generalised Real homomorphism ffota

PU(F) —= -
Now the composité ZLr P—//r> ﬁ(iﬁ() provides us with the generalised Real homomor-
phism
PE :=P%-0Z':G —s PU(H). (33)
Remark 9.6. Observe that the Re&taction onP%- is induced by the Redl-action on%-
defined byy - (s(¥),u) := (r(¥),¥ - u), where for, € H, ((y - w)&)(h) := (u&)(y'h) for
allh e T"¥). In fact,%} is a Reaﬁ(ﬁ)-principal bundle over the Real groupoid —= Y .

Lemma9.7. LetE; = (ﬁ, I, 8i,Zi),i = 1,2 be Morita equivalent R§!-central extensions of
G —= X , with equivalence implemented by$requivarient Morita equivalencé : I, —

Fg. Denote byZ’ = Z/S' : T, — T, the induced Morita equivalence. Thé’ﬁ/}2 oZ' and
P%;, are isomorphic.

Proof. This is a consequence d(, Lemma 2.39]. O

Lemma 9.8. AssumeE, and E, are Morita equivalent R@'-central extensions of. Then
[PE,] = [PE,].

Proof. A Morita equivalencd” ~z G induces an isomorphism of abelian monoids

Z. : hompe (T, PU(H)) — Homme (G, PU(H))
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given byZ,[P] := [P o Z~!] ([30, Proposition 2.35]).
Now if Z is a Morita equivalence froi; andE,, then under the notations of Lemr@&, the
commutative diagram of generalised Real homomorphisms

I —z
induces a commutative diagram of abelian monoids

N Z! ~ A
Homm@(ﬂ,PU(fH)) Homm@(rg,PU(fH))

Z1x Zoy

Homge (G, PU(H))

Consequentyp?; o(Z')"'oZ,' = P%: oZ;' = PE,. Butfrom Lemmad.7, P% o(Z')~
P%;,. ThereforePE, = PE;.
Lemma 9.9. The assignmerii — PE induces group homomorphism

2" EXR(G,S") — Hompe (S, PU(H)) e, [B] — [PE]4
Moreover. o &' = Id.

Lol

Proof. The second statement follows fro@( Proposition 2.38].

For the first statement, we shall first check tRaE] is trivial if E is. But, thanks to the
previous lemma, it suffices to show thaE, comes from a generalised Real homomorphism
U: G — U%H), whereE, is the trivial extensio§ x S',G,0). This is obvious since
L2(G* x S1)S' = L12(G*), which implies in particular that there is a canonical Redgd
G-action on the Real (trivially) graded Hilbert bundt; . s:.

Let [E], [E,] € 6(@(9,81). For the sake of simplicity, we shall assurfie andE, are
represented by R§!-twists (Fl, I, 61) and(Fg, I, 65) over the same Real groupoid —= Y
Morita equivalent td5. Let u; be a Real Haar system E{f,i =1,2. Then & is equipped
with the Real Haar system; xs: o, andT is equipped with the image of the latter (here
L Xg1 Wp IS meant to say the product measure is invariant under trlgoda action bys?).
Fory € Y, we denote by (TV; H)5' e, (rv) Ce (Ty; H)S' the completion, with respect to the
inductive limit topology inC. (TY&TY)S', of the €. (I'V)-linear span of

(@108 g e ) & e ()},

whereg, ©&, € C (Y&, is defined byl(V1,V2)] +— &1(¥1)&2(V2), and whereS, (')

acts onC, (Fy) 5" by the formulas: (&, - ¢)(¥1) = E1(Y1)d(m(y1)), and (¢ - &)(y2) =
d(72(y2))Ea(y2) for & € € (FU)SI ¢ € Cc(TY), & € C (F ) andy; € TY,i=1,2. Then,
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passing to th&2-norms, the graded Hilbert spade¥TY&TY)S" andL2(TY)S' @ o (py, L2(TY)S'
are isomorphic.
Define a generalised Real homomorphignil’) : I' — U°(H) by the Real field

(1) =[] U9 12(MY) @ H),
yey

where the Real-action is induced by the Re&taction on the Rg Hilberf-bundlesZ (") =
[Tyey (M) ® 35 — Y defined byy - (s(v), &) == (v(y),y - &), with (v - &)(h) := E(y~'h)
for all h € T"™) (note that the grading of#(I") is carried byL2(I'"Y) and is given by(5; ®
82)E(y) = (—1)31+8:10) ¢ (). Then, remarking thatr o % (I") = % (T")/S!, we define an
isomorphism of ReaIPU( H)-principal bundles ovel” —= Y

~

PU @PU, @ (pro% (T)) — PU:
—

M@ R (34)
[(y, w)] @ [(y, u2)] @ [(y, V)] [(y,v- (uOus))]

as follows: givert, € F(, we writew; (&) = Y_; dl@n), i = 1,2, whered] € L2(T¥)%' n] € K,
and similarlyv(&) = 3~ @ ¢ € 1*(I'Y) @ 3; then the unitary - (u;Guy) is defined by

v (wow))(E) =3, (V- 4}66}) onlen} o0 @)
eV OHOHIH=12(TY @ TY)S @ K.
Thus[P%, o] ~s¢ [P%: ® P%:] in Hompe (T, PU(F()). Therefore, by functoriality, we
have[P(E,®E)] ~s [(PEs) ® (PE,)], which means that?’([E] + [E,]) = 2/([E4]) +
2" ([E,]). O
Lemma 9.10. We haveZ?’ o .7 = Id; consequently, we have a group isomorphism

Homge (5, PU(F()) o = EXR(G,SY).

Proof. In view of Lemma9.9, we only have to verify tha??’o.7 = Id. Let[P] € Homgpe (9, ﬁJ(ff{))
be represented by a pdiill, p)] € Homne,, (3, PU(H)). Recall (cf. PO, Proposition 1.33])
thatP = P’ o qul, wherey, : G[U] < § is the canonical Real inclusion arid is (iso-
morphic to) the generalised Real homomorphism induced transtrict Real homomorphism
p: Glul — lgfj(fc). Notice thatP’ = ]_[ U; x PU( ) together with the Red[U]-action
Gioix - (s(9)j,, lul) == (v(g)j,, [u]). Onthe other hand, there is canonical Rgal]-action on the

Rg Hilbert bundlesZ) . s, henceP%, . s, = PU(F, A, .. 4)) = 11, U x PU(F) = P".

It follows thatP?Zp*G(g{ ZLu1 =PoZ = P, and hence?’ (7 ([P])) = [P]. O

Proof of Theoren®.1 By [20, Theorem 2.60], there is an isomorphism

dd : EXtR(S,S') —» HR(S., Zs) x HR2(G,,S),
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where the operation in the semi-direct produgbisw) + (6, w’) := (6406, (6 — &) - w-w’).
Therefore, by Theorem.4and Lemm&.1Q we have an isomorphism

ddo 7 o 2 :BrRy(S) — HR' (G4, Zs) x H3(G,,S").
The result then follows fror.9. O

10. ORIENTED RG D-D BUNDLES

ForA € BrR(S), its image inHR?(S., InvR) @ (HR(S.,Z>) x HR?(G,,S!)) is calledthe
D-D class ofA and is denoted bipD (A).

Definition 10.1. A Rg D-D bundle(A, «) is calledorientedif its D-D class is of the form
(0,0,¢); (A, «) is then of type). By E?r?{+(9) we denote the subset B/frﬁ(S) consisting of
oriented Rg D-D bundles.

Given a Rg D-D bundléA, ) of type0, the RgS!-central extension obtained by the com-
posite
BrRo(S) —~» Homuye (9, PU(T()) 7> EXIR(S,S")
is calledthe associated Rg extensiand is denoted b¥ 4.

It should be noted that the associated Rg extenEignof an oriented Rg D-D bundle is
evenin the sense that the gradingf E 4 is the zero function. Of course Morita equivalence
and tensor product of Rg D-D bundles preserve orientatid‘rusﬁr?f(sj) is a subgroup of
I§fﬁ0(9). Indeed, using similar arguments as irb[ §3.4], we obtain the "Real analogue” of
Kumjian-Muhly-Renault-Williams 17].

Theorem 10.2.Let § —= X be a Real groupoid. Then
BrR (5) = Homue (5, PU (90))st = HR?(S.,S").

Remark 10.3. We shall note that the above result generalises J. Rosedlassification ofeal
continuous-trace_*-algebrasgiven in [26]. Indeed, let(X, t) be a compact Real space. Then
BrR (X) = HR2(X,S') = HR¥(X, Z%!). Thus, ifA € BrR (X) with Dixmier-Douady class
DD(A) = « € HR3(X, Z°1), we haver*« = —«, which coincides with26, Proposition 3.1].

APPENDIXA. RG C*-ALGEBRAS

Recall thata complexificatiorof a real Banach spadé, ||.||) is a complex Banach space
(Ec, ||-||¢) such that: = E +iE as a complex linear space, the ndfr,. restricts tg.|| onE,
and|n +i&|| = |m — i&|| for alln, & € E (i.e.,Ec = E @ C). Moreover, for any real Banach
spacet , there is a unique (up to equivalence) complexification.oiMe refer the reader td.g]
for a general theory of real Banach spaces and real Barigelgebras and ta2B, chap.1] for
an extensive exposition of re@l*-algebra.
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In this way, associated to any real Banatf)dlgebraA, there is a complex Banach-Jalgebra
Ac = A ®g C. In particular, ifA is a realC*-algebra, ther\ - admits a structure of a complex
C*-algebra. It is however natural to ask the following questio

Question A.1. LetB be a complex_*-algebra. Does there exist a closed r&al-subalgebra
B, of B suchthatB = B, @r C?

Although it was mentioned in1jg] that this question was remained open, the answer is in
fact 'no”. Indeed, as we will see later, the existenceBpfis equivalent to the existence of
a conjugate-linear involution oB, which is also equivalent tB being isomorphic to its con-
jugate algebra via a-periodic isomorphism). But such an involution induces awolutory
anti-automorphisng : B — B (i.e. ¢ verifiesp(ab) = ¢(b)e(a),Va,b € B andg? = 1).
On the other hand, A. ConneS][and T. Giordano 11] have constructed examples of von
Neumann algebras that are not anti-isomorphic to themseWary recently, other explicit ex-
amples ofC*-algebras notisomorphic to their conjugate algebras hega bonstructed by N.C.
Phillips [23] and N.C. Phillips and M.G. ViolaZ4)).

We shall however point out that being anti-isomorphic telftss not sufficient for aC*-
algebraB to admit a conjugate-linear involution, as it was proved byanes in 14].

A.l. Generalities. In this subsection we are concerned with thoSé-Yalgebras for which
QuestionA.1 has a positive answer.

Definition A.2. A Real (Z,)-gradedC*-algebra consists of @*-algebraA together with

(i) an involutive*-homomorphismx : A — A with & = 1; « is called thegrading
(i) an involutive*-automorphisnuv, : A — A which is antilinear, such that}, = 1, and
op0x = o 0a. 0x IS called theReal structureof A.

We will say thatA is a RgC*-algebra, for short.

We will often write (A, o) for such a RgC*-algebra and we decompogeinto the direct
sumA = A% @ A whereA? = Ker(15%) andA® = Ker(1£%).

An elementa € A is called homogeneous of degrgdori = 0,1 mod 2, if a € Al ais
said to banvariantif it is of degree0) ando A (a) = a. We write|a| for the degree of an element
a € A. Moreover, it is easy to see that is aC*-subalgebra oA while A! is not.

Example A.3. Let A = A° © A! be a graded redl*-algebra. Then its complexificatiofc is
also graded. Indeed, we hake = A2 & A¢. Now thebar operation™ : Ac — A given by
a +ib := a —ib defines a Real structure du-. For instance, any reél*-algebraA gives rise
to a RgC*-algebra by taking\! = 0.

Example A.4. Given a realC*-algebraA, the direct sunA & A admits a canonical grading
given by(a,b) — (b, a);then(A ® A)° ={(a,a) |a € A}and(A ® A)! ={(a,—a)|a c
A}. This induces a grading on the complék-algebraA ¢ & Ac which becomes a Real graded
C*-algebra. This grading is callede standard odd gradingn particular, the complex Clifford
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algebraCl, = Co C is a RgC*-algebra with its canonical Real structure given by the demp
conjugation (seeZg], for instance).

Definition A.5. Let (A, o4) and (B, og) be RgC*-algebras. AReal graded homomorphism
betweenA andB is a homomorphism o€*-algebrasp : A — B that intertwines the Real
structures and the gradings.

In particular, we say thatA, o, ) and (B, og) are isomorphic as Rg*-algebras, and we
write (A, o0a) = (B, o), if there exists a Rg isomorphism between them.

If (A,0a) is a RgC*-algebra, then the multiplier algebfd(A) has also a structure of
Real gradedC*-algebra. Indeed, it is the grading onA and (T;, T;) € M(A), we put
Ad. (T, To) := (eTie, eTye) and it is easy to see that this defines a gradingve{i\) with
MA)Y = {(T, o) € M(A) | €Tee = (—1)'T, k = 1,2}; moreover the Real structure is
given by

oa(T, To) == (ocaTioa, 0AT20).

A subspaceB of A is Real gradedf it is invariant undero, and if it is the direct sum of the
intersection®8 N A (or equivalently, if it is invariant under the grading A). For instance, it
is easy to check that the centre of any Rgalgebra is Rg.

Le I be a Real graded ideal {/\, o). Let[a] denote the class af in A /I, then we can show
that the maps([a]) := [o(a)] ande([a]) := [e(a)], are well defined fromA /I to A /1, giving
us a grading and a Real structure on the quotignalgebraA /1.

Now let us give the following simple characterisation of Ryalgebras.

Lemma A.6. Let(A, o) be a RgC*-algebra. Then there exists a redj-gradedC*-algebra
Ar suchthatA,ox) = (Ar ®& C,” ), where () is the bar operation.

Mainly speaking, a Rg_*-algebra is just a graded compléeX-algebra which is the com-
plexification of a graded redl*-algebra, together with the bar operation. This justifies th
terminology 'Real used.

Proof. PutAg :={a € A| oa(a) = a}. ThenAg is a graded reaC*-algebra. Moreover, it is

very easy to check that the map— Ap +iAg, a — 2L 4 §(2=08)) extends to an

isomorphism of complex*-algebras intertwining the Real structures and the grading [

Remark A.7. Similarly, we will callRg Banach spacany complex graded Banach space which
is the complexification of a Banach space oer

Example A.8. Let (X, T) be a (Hausdorff and locally compact) Real space. Thémduces
a Real structure, also denoted byon theC*-algebraC,(X) of complex valued functions on

X vanishing at infinity, given byt(f)(x) = f(t(x)), for f € Cy(X), x € X. Therefore, from
LemmaA.6 we have(Cy(X), 1) = (Co(X, T)®@rC,~ ) whereCy (X, 1) :={f € Co(X) |f(T(x)) =

f(x), Vx € X}is the realC*-algebra of invariant elements 68,(X), t).
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We must also say something about the tensor product of twbdRe@edC*-algebras. This
paragraph is a direct adaptation 8] to the Real case. LéfA, o) be a Real grade@*-algebra.
A Real graded linear functionain A is a linear functionaf : A — C such thatf| , =0 and
f(o(a)) = f(a) forall a € A. A Real graded state oh is a positive linear functiona on A
such that|s|| = 1. Suppose thdtA, o) and(B, o) are separable, Real gradét-algebras, then
(A®B, c& o) denotes the algebraic Real graded tensor produatarfdB, where elements are
graded bea®b| = |a|+|b|, and the Real structure is given byyo(a®b) := o(a)>o(b). The
product and involutions are defined by

(a®b)(a’Gb’) == (=1)®1e(aa’Gbb’),

(a®b)* = (=1)lPl(a*Ob*).
Now if s andt are Real graded states AnandB respectively, let
(s&t)(c*c) == Y s(aja;)t(bib;),
i,j=1

forc =31, ai®b; € AOB. Thens®t is a Real graded state @noB. We define eC*-norm
onAGB by

Il = sup(sét)(d*c*(:d)
C ostd (soOt)(drxd)

where the supremum is taken over all Real graded statesA, t on B, and over ald € A©B
with (s®t)(d*d) # 0. The completion ofA®B with respect to this norm is a gradett-
algebra denoted b}t ®B; moreover,co extends to a Real involution cA®B which gives
a Real graded *-algebra(A®B, c®0) called the(Real graded) tensor produof (A, o) and
(B, o).

A.2. Elementary graded complexC*-algebras. A complex gradedC*-algebraA is called
elementary of parity (resp.of parity 1) if it isomorphic as a grade@*-algebra tdk () (resp.

to K(H) & K(H)), where X (resp. H) is a complex graded Hilbert space (resp. a complex
Hilbert space), ant&(H) & K(H) is equipped with the standard odd grading.

Example A.9 (The complex CliffordC*-algebras) The complex CliffordC*-algebrasCl,

can be defined as gradéii-algebras of compact operators in the following wayp I 2m,

Cl, is Clyy = K(C*" " @ C*™ ") equipped with the standard even grading.Advhere

€ = (1) (1) ;if p = 2m + 1is odd, thenCly,,,; = K(C?™) @ K(C>") with the standard
odd grading. We then see that t8&,,,,'s are graded elementaty/-algebras of parity, while

the Cl,,,,,1's are graded elementaky*-algebras of parityl. Moreover, these algebras verify

Cl,®Cl, = Cl,. 4 as graded_*-algebras (see for instancg f.14.5], [2]).
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For the sake of simplicity, we assume in what follows thaits a complex separable infinite-
dimensional Hilbert space. Then, by choosing an isomomphis= H® H, we have a complex
graded Hilbert spacg( := H & H = (H & H)° @ (H & H)', where the grading is given by
(x,y) — (y,x). We thus obtain a complex graded element(a‘u‘yalgebrafJAcev = K(H)

. : . . . 1
of parity 0 (here eV’ stands forever) whose grading automorphism is the unit r;? 0).

We also get a graded elementa@il-algebraffcodd = K(H) & K(H) with the standard odd
grading. The next subsections are aimed at describing taksRectures oK., andX,q4.

A.3. Real structures oanACev.

Definition A.10. A Real structurgresp.quaternionic structurgon Hisa homogeneous anti-
unitary] : 5 —» 3 such tha§? = 1 (resp. such thgt = —1).

Real structures ofi{ will be denoted adg, or asJig,i = 0,1 if we need to emphasise the
degree of Jr. Similarly, quaternionic structures will be denotedasor J; i, 1 = 0, 1.

Given a Real structurk : H — K, its (Jrl)-eigenspacéA{]]R ={x e H | Jr(x) = x} (that
we will also denote by)'A{R if there is no risk of confusion) is a real graded separatiaite-
dimensional Hilbert space such tht= fC]R ®r C. Furthermore, there exists an orthonormal
basis{e, }nen Of K, unique up to conjugation with homogeneous elements in tti@gonal
groupO(f}AC]R), such thafy is given byJr(x) := ), Xnen forallx =Y xne, € . Writing
Jr in this form, we get the following straightforward lemma.

Lemma A.11. Let Jr be as above. Definey : fJACeV — fJACeV by og(T) := JrTJr. Thenoy is a
Real structure o, such thatX., )., = Kr(Hg) as real gradedC*-algebras.

Now supposdy : H — Hisa quaternionic structure. Define the degteeperator
I:H — K by Ix := ix. ThenI? = —1, andI] = —JI. Thus, we can define the operator
K:=1J: H —» H which has the same degreeJaand which is such tha&? = —1 = IJK.

It turns out that there exists a graded action of the quaiesil on H given by (i,x) —

ix, (j,x) — jx := Jx, and(k, x) — kx := Kx = IJx, where{l, 1, j, k} is the usual basis of
the division ringH. Let }AC]H (or justHy if there is no risk of confusion) be the quaternionic
graded Hilbert space, where thevalued inner product is given bk, y)i := (x,y) + (x, Jy)j

if (-, -) denotes the complex scalar productof

Lemma A.12. Let]y be as above. Defingy : IJACQV — CJACQV byou(T) := —JuTJu. Thenoy is

a Real structure oriiAceV such that(fJAcev)(YH is isomorphic, under a graded isomorphism, to the
graded realC*-aIgebraﬂCH(JA{H) of the compadcH-linear operators on the graded quaternionic
Hilbert spaceﬂA{H.

~

Proof. The only thing we need to show is the graded isomorphism. &ethafll € (K,)o,-
Then, T]y = JuT, so thatT extends uniquely to a compdgtlinear operatofl : Hy — Hy
through the formulal' (jx) := Ju(Tx) for x € H. This provides a homomorphism of real
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gradedC*- aIgebras(fKeV)GH — IKH(}CH) T—T. Conversely, an)T € CKH(J{H) induces
a uniqueT € L(fH) such thafTx = Tx for all x € 3. ThenT < fKeV Moreover, one has
(TJa)x = T(Jux) = T()x) = )Tx = (JuT)x; henceT]H = JgT, and thertrH(T) T. We then
get a homomorphism of real gradéd-algebraSKH(}CH) (CKW)GH, T—T. ltis easy to
check that these two homomorphisms are inverse of each other O

The following result classifies all the Real structuresian.
Proposition A.13. Suppose that is a Real structure ofK..,,. Then,o is either of the fornog,
or of the formoy.

Proof. Choose an orthonormal basts, } of .‘H and forT ¢ IKeV, defineT e fKeV by T(x )

T(x), where ifx = Y xnen, We setk := Y__Xnen. ThenT = vTv, wherev : H — K is
the anti-unitary defined by the complex conjugation wittpexg to the basié,.}. Moreover,

v = 1. Now, deflﬂEG e Aut®(K ev) by 6(T) := o(T). Then, there exists a homogeneous
unitaryu € U(3) such thats = Ad,,. Whenceo(T) = 6(T) = wTvu ! = JT]~L, where

] :=uv. Observe thaf is a homogeneous anti-unitary sinces. Furthermore, for all € CJACQV,

we havel = o?(T) = J*T(J1)?; therefore]? = +1. O

Definition A.14. We say that a Rg elementaty -algebra A, o) of parity 0 is (of type)[0; e, nl,
wheree = 0, 1,1 = &, if its Real structure is induced by an anti-unitdryf degrees such that

J? =nl.

Remark A.15. It follows from PropositionA.13 that there are four types of Rg elementary
C*-algebras of parity: [0;0,+], [0;0,—], [0; 1, +], and[0; 1, —].

Remark A.16. RegardindgK(H) as of parity0 (with the trivial grading ofK), we get that every
Real structure ofk () is the conjugation with an anti-unitafy: H — H such thaf? = +1.
Thus, a Real grade@*-algebra of the forn¥(H) is either a0; 0, +] or [0; 0, —].

Example A.17 (Real structures of'l,). Consider the second Clifford algebtd, = KX(C ®

C) = M;(C), equipped with the standard even grading. There is a caaoR®Eal structure
Jr of degreel on the graded Hilbert spadé ¢ C given by the complex conjugation, and a
canonical quaternionic structure of degfel i = iJ, r, which induce the same Real structure
clp2 on Cl, such that(Cly)s, = (Cly)cy,, = M2(R) = Clye. In other wordsCl, is the
complexification of the second real Clifford algeltd, » (see P] for more details on the real
Clifford algebrasCl, 4). However,Cl, is also the complexification of the quaterniadisas
follows. Define the quaternionic structufgy : C & C — C @ C of degreel by (x,y) —
(y,—x). The graded quaternionic Hilbert space obtaineHjshe Real structure induced by
J1u is denoted byl, . Observe thatCl,).1,, = X (H) = H = Cly,. Moreover, this Real
structure is equivalent to the one induced by the anti-wifaz(x,y) := (y,x). These two
Real structures will play a central role in the classificatad elementary RgC*-algebras in
SubsectiorA.5.
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A.4. Real structures onIJAcodd. In this subsection we describe the Real structure@(gad.
We start by some observations which will be useful. Supposare given a trivially graded
C*-algebraA. Then, any Real structureon A defines two different Real structuresp o and

o ® (—o) on the graded *-algebraA & A (with the standard odd grading), respectively given
by (a,b) — (o(a),o(b))and(a,b) — (o(a),—oc(b)). Notice that the latter Real structure
is equivalenttda, b) — (o(b), o(a)). Furthermore, if we denot&y := A, then on the one
hand, we get thatA & A).q. IS the graded real*-algebraAr & Ay with the standard odd
grading, and on the other harfdy © A) ;4 (— ) = Ar @ 1Ag is isomorphic to the graded graded
C*-algebraA ., which is the underlyindgR-algebra ofA. It is easy to see that the grading of
Arear is given byA?, | = Ag andA!l, _, = iAg. Conversely, we have the following.

Proposition A.18. Let A be a complex*-algebra, and leA ¢ A be equipped with the standard
odd grading(a,b) — (b, a). Suppose is a Real structure o\ & A. Then,t is either of
the form(a,b) — (o(a), o(b)) or (a,b) — (o(b),o(a)), whereoc : A — A is a Real
structure on the ungraded*-algebraA.

0
Proof. Sincet is of degred), it can be written in the form = * T_) with respect to the
o

decompositio’A DA = (ADA) D (A® A), wheret' : (A D A)0 (A® A)is aReal
structure on theC*-subalgebrdA © A)° of A @ A, andt™ : (A @A) — (A® A)lisan
anti-linear isomorphism of vector space. For(@la) € (A ® A)°, t+(a,a) € (A D A)?, so
that it is in the form(o(a), o(a)). If (ai, a;) — (a,a) € (A ® A)°, then(o(ay), o(a;)) =
™" (ay,ai) — T7(a,a) = (o(a),o(a)), and theno(a;) — o(a) in A. Furthermore,
it is straightforward thatr(ab) = o(a)o(b), o(Aa) = Ao(a) forall A € C,a € A, and that
0? = 1, so thats is a Real structure oA. Now, for all (b, —b) € (A®A)!, (b, —b)- (b, —b) =
(b%,b?) € (A ® A)? thus,

(T (b,—b))? = 7(b* b?) = " (b* b?) = (0(b)?, o(b)?).
Hence, since thisistrue fordlle A, we obtaint— (b, —b) = (*0o (b) Fo(b)). Ift(b,—b) =
(o(b),—o(b)), thent is given byt(a,b) = (o(a), o(b)), for all (a,b) € a ® a, and if
7 (b,—b) = (—0o(b), o(b)), then for all(a,b) € A ® A, t(a,b) = (o(b), o(a)). O
Definition A.19. A Real structurer on A @ A is calledevenif it is of the form (a,b) —
(o(a), o(b)), itis oddif it is of the form (a,b) — (o(b), o(a)), whereo is a Real structure
on the ungraded*-algebraA.
Proposition A.20. Assumer: A @ A — A @ A is a Real structure. Then

(@) (A® A, 1) = (A®CL, o®cly, ), if Tis even, and

(b) (A A, 1) = (A®CLy, o®cly ), if Tis odd.

Proof. As graded compleg*-algebrasA ®A = AxCl, = A®Cl, (cf. [4, Corollary 14.5.3)).
If T is even, then as graded re@f-algebras,(A & AJg = Ar & Ag = (AR®C1071) =
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(A®Cll)g®cm, whereAr := Ay, and (A & A)r = (A & A).; this establishes (a). K

is odd, therﬁ( D AR = Avear = Ap®C = AgClyg = (A®(Cll)c®dw, which establishes
(b). O
Corollary A.21. Suppose is a Real structure oﬂAcodd. Then, there exists an anti-unitary
] : H — H with J2 = =1, such that eithefXoqq,0) = (K(H)QCLy, Adj&cly,y), or
(Koaa,0) = (K (H)&CLy, Ady&cly ).

Definition A.22. We say that a Rg elementa@*-algebra(ﬂ?odd, o) of parity 1 is (of type)
[1; &,m], if the Real structure is of parity (i.e., ¢ is 0 if o is even, and if o is odd), and if the
anti-unitary] of CorollaryA.21is such thaf? =n1, wheren = =+.

It then follows that there are four of such typék;0, +], [1;0,—], [1; 1, +], and[1; 1, —].

Example A.23. (Cly, cly;) and(Cly, cl, o) are of typedl1; 0, +] and[1; 1, +], respectively.

A.5. The classification table. We start this subsection with the following lemma.
Lemma A.24. Let H; and H, be two graded complex Hilbert spaces, andJleti = 1,2
be an anti-unitary of degree; on #; such thatf? = +1. Denote byg;,i = 1,2 the grading
automorphism ofK(%;). Then, there is an isomorphism of Real graded (elementaty)
algebras

(K(FH)SK(H), Ady, ®Ady,) = (K(FETC), Ady),

where] == J,g{2®J2g5°.
Proof. The isomorphism of graded*-algebrask (#; ) &K (H,) — K(FH,&H,) is given on
homogeneous tensors by

(TOT2) (x1@x) = (—1)™IPIT, (%)@ To(x2).

Moreover, a simple calculation shows that this is actualRgal isomorphism, whek (3, )
is equipped with the Real structure Adndeed,

Ad(T&Ty) = (J1952@)205") (T16T2) (19226 J205')"
= (=Dt (19T 0,05 T2) ((97)2)i®(g5)T5)
= (=)=l (1672 T (g7) 27 @ (295" T2(95)1T5))
— Ady, (T))&Ad, (Ty).
|

A particular case of this lemma is the following.
Corollary A.25. Le] be an anti-unitary on the ungraded Hilbert spabesuch that]? = n1,
where as usual = +. Letcly» andcl, be the Real structures @fl, defined in Examplé.17.
Then,

e [0;0,m] = (K(H),Ad;)®(Cly, cly ), where] : H — H is such thaf? =n1, and
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e [0;1,m] = (K(H),Ad;)®(Cly, cly), where] : H — H is such thaf? = —n1.

The next theorem can be viewed as a generalisation of C. TsWadult [31, Theorem 3] to
the infinite dimensional case.
Theorem A.26. The type of the Real graded tensor product of two Real gratezdentary
C*-algebras(A, o0a) and(B, og) depends only on those Ok, 04 ) and(B, o). Moreover, we
have the formulas

[0; €1, M]®[0; €2,M2] = [0; €1 + €2, (—) 2N M2 (36)
[0; £1, MI®[L; €2,10] = [1; €1 + €2, (=) T2 ma] (37)
[1; e, M®[L; €2,m2] = [0; 14 &1 + €9, (—) M2l , (38)

where the sum of degrees is nibd

Proof. The formula 86) is nothing more than Lemm@&.24. Indeed, we have seen that the Real
structure oK (H; @) is defined by the anti-unitary = J,g2®J»g5!. The degree of is
thene = ¢, + &, and]? = (—1)%122J2®]2 = (—1)%1 %M, 1®1.

Also, combining CorollanA.21, CorollaryA.25, we get 87), by considering the isomorphism
of Rg C*-algebras

(K(j{l)aAdjl)@(xw{ﬂ@@lh Ady,&T) = (K(FEH,)ECL, Ad;®T),

where] = J,®]J,, andr, is eithercly; orcl, o.

Finally, the equality 88) follows from CorollaryA.25 and the following isomorphisms of Rg
C*-algebras, which can be established by merely using theeptiep of the real Clifford alge-
bras PJ:

Ile

(Cly, C1071)®(Clla Clo,l) (Cly, 010,2)
(Cly, clo,1)®(Cly, cly ) = (Cly, cloz)
(Cly, Cl1,0)®((:11, 011,0) (Cly, CIQ,O)-

Ile

We summarize all the preceding discussions by the followasglt.

Definition and Proposition A.27. Denote byJACO, the Rg eIementar(j*-aIgebra(fJA(ev,AdIR),
where]g is the anti-unitary of degre@on H defined by(x,y) — (x,y) (" " is the complex
conjugation with respect to an arbitrary orthonormal baf;[gf). TheanACO is of type[0; 0, +].

Say that two Rg elementafy*-algebrasA andB arestably isomorphigf A®CJA<0 = B®IJA<0,
as RgC*-algebras.

Stable isomorphism classes of Rg elementaryalgebras form an abelian group of order
under Rg tensor products, denotedl?./J\ﬁ(*), and calledhe Rg Brauer group of the pointhe
zero element ogrﬁ(*) is the eIemen:ﬂACO.
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Furthermore, elements B/frﬁ(*) are, up to stable isomorphisms, classified by the following
8-periodic table

ParityO Parity 1
Ko = [0;0,+] 9(1_[10+]
fK2 = [0 1,+] j% =[1;1,-]
Ky = [0;0, ] K = [1;0, -]
TJA<6 = [0;1,—] Ky = [1; 1 +]

TABLE 1. Classification of Rg elementa@f algebras

Remark A.28. Under the notations of Tablk we set for alln € N*:

Theanp®qu = J<p+q, and from TheorenA.26, fKn = K,.5 forall n € N. Now, define
K. » as the mversedK in BrR( ). Thean,n = IKg n

Example A.29. (Cf. [28]). One can determine the Real structures of the gradedo@iff *-
algebrasCl,, (recall ExampleA.9), for n € N*, in the following way: decompose into a
sump + ¢, and consider the Real spa@& 9 @r C, with the obvious involution; this latter
induces a Real structurg,, ; on the graded’*-algebraCl,, = Cl(RP'9 @ C), such that the
Real part is isomorphic to the graded real Clifford algebta . For this reason, we denote the
thus obtained Real gradédr-algebra byCl, ,. Indeed, for every decomposition= p + q,

it is not hard to check thafl, , is a Rg elementar¢*-algebra of typey —p mod 8 (see for
instance §]).
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