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Conceptualizing and studying students’ 
processes of solving typical problems 
in introductory engineering courses 
requiring mathematical competences

Rolf Biehler, Jörg Kortemeyer and Niclas Schaper

University of Paderborn, Paderborn, Germany

The project KoM@ING aims to investigate the mathemat-
ical skills which are required in technical subjects of en-
gineering bachelor courses. Our subproject is especially 
interested in the first-year-course “foundations of elec-
trical engineering”. In order to do research on this sub-
ject we developed the concept of a “student-expert-solu-
tion” (SES) which was generated by analysing expert 
interviews. The SES is supplemented by the required 
resources and a didactical reconstruction, for example, 
typical mistakes, alternative solution approaches and 
learning goals. The SES of a basic engineering exercise 
will be presented. We find some discrepancies with the 
standard modelling cycle, as well as some surprising 
problem solving strategies.

INTRODUCTION

We are interested in the competence expectations that 
are implicit in these tasks, i.e., expectations that are 
set up by the instructors of engineering courses, often 
based on years of experience, but not on any explicit 
theory of engineering competence. Originally, we 
intended to focus on mathematical aspects only, but 
it turned out that a more holistic approach is more 
appropriate. Based on this, we are analysing how and 
how well students in first year standard university 
courses on electrical engineering solve tasks given to 
them in homework assignments and written exami-
nations Our project is part of the KoM@ING-project, 
where the modelling and assessment of mathematical 
and engineering competences is the focus. Our sub-
project chose a qualitative approach. The tasks we 
are analysing require knowledge and cognitive re-
sources from mathematics on the one hand and from 
electrical engineering on the other. The mathematical 

knowledge is partly based on school knowledge and 
on the mathematics that students learn in the separate 
courses on higher math in the first year parallel to 
the engineering courses. It is well known that there 
is a mismatch between the mathematics learned in 
the separate courses, the mathematics at school level 
and “the contextual mathematics” required in solving 
engineering tasks (see, e.g., Redish, 2005). The math-
ematical practices in engineering contexts look far 
different from those in purely mathematical contexts. 
The tasks given to the students cannot directly be re-
garded as mathematical modelling tasks in the sense 
as this is discussed in mathematics education.

We focus on five tasks from the final exam of the sec-
ond part of the “foundations of electrical engineer-
ing”-course (called the “GET-B” exam), which electri-
cal engineering students are to take after their first 
year. All of the students’ written work was scanned. 
Moreover the same tasks were given to eighteen pairs 
of students and their work and communication was 
video-recorded. With nine of the student pairs we 
used stimulated recall for extending the base of our 
analysis. In order to analyse the problem solving pro-
cesses and the written work of the students we need 
a didactically oriented task analysis and theoretical 
frameworks on which we can base this analysis, in 
other words a “normative solution” of our task.

THEORETICAL BACKGROUND 

We consider the following three theoretical frame-
works as relevant: The first approach is the model-
ling cycle by Blum and Leiß (2007), which divides the 
solving of a mathematical modelling exercise into 
seven steps: (1) understanding of the task and the un-
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derlying situation, construction of the so-called “sit-
uation model” (2) simplifying and structuring of the 
situation: construction of the so-called “real model”, 
(3) translating into a mathematical problem (entering 
the “world of mathematics”), (4) mathematical work, 
(5) interpretation of the result in the real world, (6) 
validating and (7) presenting of the results. The cycle 
consists of two parts, the “rest of the world” with steps 
(1), (2), (6), (7) and the mathematics with step (4). The 
changes between the two worlds happen in step (3) 
and (5). This modelling cycle description is considered 
as an idealisation, probably only applicable in school 
contexts. Nevertheless, this approach is useful for us 
as a tool to show important features of our “modelling 
example”, which differ even on an idealised level.

The second approach is problem solving by Polya 
(1949), who divides problem solving processes into 
four phases: understanding the problem, devising a 
plan, carrying out the plan and looking back. The third 
approach is the description of ways of mathematical 
argumentation and mathematical resources in phys-
ics by Bing (2008) and by Redish and Tuminaro (2007). 
They distinguish between four framings that describe 
how students justify their results to exercises: calcula-
tion (algorithms give exact results), physical mapping 
(math should represent physics correctly), invoking 
authority (using of results of the physics-course) and 
math consistency (similarities to other physics prob-
lems solved with math).

We consider the first two approaches as “draft” pro-
cess models, which will have to be extended and 
adapted to the specific tasks we are analysing. The 
third approach discusses the role of mathematical 
resources and knowledge in solving problems from 
physics and we use this approach to identify and char-
acterize resources needed by the students. In other 
words, we consider that the development of theoreti-
cal descriptions has to be based on empirical results as 
well. We ask the task designer and electrical engineer-
ing experts to solve the tasks from the perspective 
of students who well understood the contents of the 
electrical engineering course. Based on further con-
sultation of subject matter and didactical experts, we 
(re-)construct what we call the “student-expert-solu-
tion” (SES). The SES is used as a basis for sharpening 
the theoretical description and analysis of the solving 
processes, resulting in what we call a “theoretically 
enhanced SES” (TESES). We use this as a tool for un-

derstanding first year engineering students’ solving 
problems.

METHODOLOGY

In order to get a detailed solution for the exercises 
we conducted interviews with the task designer and 
electrical engineering experts from the institute at 
the University of Paderborn, which is responsible 
for the GET-B, using the Precursor-Action-Result-
Interpretation (PARI) method, a task-based interview 
technique conducted with experts of the task (Means 
et al., 1995). The aim of these interviews is to identify 
the explicit and implicit expectations of competenc-
es. The half-structured PARI-interview consists of 
three phases: In the first phase, experts have to do 
the exercise without any interruptions, but they are 
told to think aloud while writing down solutions. In 
the second phase, the interviewer goes through the 
written solutions with the expert in order to recon-
struct the reasons for the way the exercise was solved 
and identify the used resources. In this phase experts 
need to justify each step of their solutions and make 
explicit the knowledge they used. The last phase is a 
didactic reconstruction of the exercise, which con-
sists of two parts. In the first part the experts’ view 
on students’ expected solutions is solicited. This 
part contains questions on alternative solutions to 
the exercise, typical mistakes of students after their 
first year and possibilities to validate the results. In 
the second part the interviewer asks for the reasons 
for assigning the exercise and possible variations for 
exercises on the topic, aimed at making explicit the 
implicit competence expectations.

The interview is the foundation of the student-ex-
pert-solution (SES), which is the best solution an 
electrical engineering student could achieve with 
the knowledge presented in electrical engineering 
and mathematics lectures prior to the exam (i.e., the 
knowledge after their first year of studies). In the next 
step the student-expert-solution is subdivided into 
categories, i.e., phases and cognitive resources in a 
deductive approach based on the three mentioned 
theoretic approaches. This document consists of a 
two-column table: the SES in first column and related 
theory-based comments in the second column; it is 
called the “theoretically enhanced” student expert 
solution (TESES). The TESES is used as theoretical 
instrument to analyse the transcribed solution pro-
cesses of our pairs of students. The participating 
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students attend degree-relevant courses in electri-
cal engineering or industrial engineering, and they 
were at the end of their first year when the study was 
conducted. Nine pairs were filmed while they were 
working on the exercises and were talking about the 
way they solved them. 

EXEMPLARY RESULT: A SES 
FOR ONE TYPICAL TASK

A sample exercise 
For illustration, we present one of the exercises of the 
mentioned exam, which deals with magnetic circuits, 
and its theoretically enhanced student-expert-solu-
tion. This section gives the problem setting and a 
short overview of the solution. The exercise consists 
of six subtasks and starts with the following sketch 
of a magnetic circuit:

The magnetic circuit consists of two iron cores with 
different cross section areas. The winding on the 
U-core has N=100 windings und is flown through by 
an electric current of I=10A. At the places of minimal 
distance between the two cores there should be a joint 
that behaves like an air gap. The exercise gives the 
following data for the iron cores: lFe,1=50 cm, lFe,2=30 
cm, AFe,1=150 cm2, AFe,2=60 cm2, μr=1000.

Subtask 1: Sketch the equivalent electric circuit dia-
gram of the magnetic circuit und simplify it as much 
as possible. Solution: The three parts of the U-core 
(the upper part and the left and right parts) and the 
lower iron core each give constant reluctances and 
can thus be summed up to one reluctance RFe. RL, the 
reluctance in the air gap, is dependant on the width 

of the air gap d and has to be doubled, because there 
are two joints between the two parts.

Subtask 2: Describe the total reluctance RM(d) as a 
function of the variable d. Solution: Because of sub-
task 1 the total reluctance can be written as the linear 
function of d: RM(d)=RFe+2RL⋅d using calculated values 
for RFe and RL.

Subtask 3: Describe the inductance L of the setting as a 
function of d, the width of the air gap; assess the width 
of the air gap for which the inductance is maximal, 
and calculate the value of this maximum. Solution: 
The formula for L is L(d)=N2/RM(d), i.e., the width of the 
air gap d is part of the denominator and the fraction 
becomes maximal, if d=0. We get the maximal value 
by insertion of d=0.

Subtask 4: Calculate the magnetic flux density bL in 
the air gap.

Solution: We get the formula for the magnetic flux 
density by combining two formulas for magnetic 
fluxes.

Construction of the associated theoretically 
enhanced student-expert-solution
The first tool to analyse the exercise is the modelling 
cycle by Blum & Leiß (2007). We have developed sev-
eral modifications of this cycle in order to better de-
scribe students’ processes including identifying the 
resources required during the solving process. We 
summarize first and go into details later: 

―― Instead of constructing a real model as suggested 
in the modelling cycle students rather need strat-
egies to understand conventionalized sketches 
and use them to mathematize the electrical en-
gineering problem.

―― Instead of entering the “world of mathematics,” 
they enter into a “mathematics of physical quan-
tities” with special resources: those resources are 
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Figure 1: Sketch of a magnetic circuit consisting of two iron cores
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Figure 2: Equivalent circuit diagram
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not solely based on pure mathematics learned in 
school or university mathematics courses.

―― The authenticity of the problems offers strategies 
to validate the results.

We subdivided the solution process of subtask 1 and 
2 into four phases. The two subtasks can be prelimi-
nary assigned to what is called (1) understanding of 
the task and the underlying situation, construction 
of the so-called “situation model” and (2) simplifying 
and structuring of the situation: construction of the 
so-called “real model”. However, the competence re-
quirements are quite different. The students do not do 
idealisations and simplification themselves, but they 
have to understand the given sketches as a “real model” 
whose idealisations will remain largely unconscious 
to them. The following idealisations, which were ex-
pressed in the interviews with the experts, are im-
plicit: We only look at the magnetic behaviour of the 
test arrangement in an idealized static situation. The 
inductance of the windings, leakage fields and non-lin-
ear magnetic behaviour of the test arrangement are 
disregarded. Dynamic effects caused by the motions 
in the system are disregarded: Because of the changing 
of the distance between the two iron cores the energy 
changes and hence a non-linear ratio between power 
and force arises. The students are socialised into a 
world of certain real models. Idealisations often stay 
implicit and the students are often not aware, that 
there are idealisations. That is similar to physics stu-
dents who use mass points without being aware of the 
idealisation, or geometry students that use dimen-
sionless points. Students are to learn to “read” the 
sketch of Figure 1 and later find the fitting equations 
for this figure.

In contrast to saying that students should draw a pic-
ture or diagram of their own choice for understand-
ing a situation (Polya, 1949; Blum & Leiß, 2007), the 
diagrams of Figure 1 and Figure 2 are very conven-
tionalized in electrical engineering and constitute a 
specific “notational system”, which is part of the tools 
of the discipline. Students who have not understood 
this might have difficulties if they approach the tasks 
and try to develop their own idealizations based on 
general physical knowledge – they could try to un-
derstand all the physical mechanisms and then be 
overwhelmed by the real situation. A further require-
ment is that students are familiar with the technical 
terminology (concepts) of electrical engineering in 

order to understand terms like the “magnetic flux” or 
“reluctance”. Subtask 1 of the exercise requires using 
the “method of the equivalent electric circuit diagram”, 
which helps to eventually mathematize the situation. 
The sketch of the test arrangement (Figure 1) has to 
be translated into an equivalent circuit diagram (e.g., 
Figure 2) using special rules for translation, which 
were expressed in the previous section. Equivalent 
electric circuit diagrams form a second notational 
system in electrical engineering. They are part of the 
acquisition of a domain-specific “graphical language” 
(similar to free-body force diagrams in mechanics or 
Feynman diagrams in quantum mechanics).

The third phase consists of setting up the equation 
for calculating the total reluctance with the help of 
the equivalent circuit diagram, which was generated 
in the first subtask. Once again, this is a translation 
task into which students have been socialized – ide-
alized electrical or magnetic circuit diagrams are 
translated into sets of equations using the so-called 
Kirchhoff rules, just like free-body force diagrams 
are translated into vector equations using Newton’s 
Laws, and Feynman diagrams are translated into 
path integrals using Feynman rules. The modelling 
of physical situations as idealized graphical diagrams 
and subsequent “mathematization” using sets of algo-
rithmic translation rules is a common theme among 
the most powerful theories in physics and engineer-
ing.  As mentioned above the reluctances in the iron 
and the air gap have to be added to execute this step, 
which requires forming of a set of equations between 
known and unknown physical quantities. There are 
also some differences to the modelling cycle in this 
step: A set of equations between physical quantities 
(numbers with units instead of just numbers) has to 
be set up. The student does not enter the “world of 
mathematics”, but instead the “mathematics of phys-
ical quantities” with electrical engineering meaning. 
We are also convinced that many modelling problems 
at school level equally do not enter the “world of pure 
mathematics,” but remain contextual mathematics 
with quantities.

In the next phase the total reluctance is calculat-
ed using the previous derived formula. As an ex-
ample, in Figure 3 we reproduce the calculation 
of the constant part of the total reluctance (i.e., 
the reluctance of the iron core). The shorthand 
μ=μrμ0=1000μ0=1000·4π·10-7  Vs/(Am) is used for the 
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permeability of the metal, where μ0 is the vacuum 
permeability and μr is the given relative permeability.

In the fourth phase, the resources of “mathematics of 
physical quantities” are needed, i.e., the management 
of units as well as techniques and strategies for the 
transformation of fractions containing physical quan-
tities. Often these have neither been part of school nor 
university mathematics, and students tend to make 
many mistakes when attempting to apply these re-
sources. One central resource is the “management of 
units”, which includes the “handling of powers of ten”. 
Those resources are typically required in physics and 
physics-related subjects if tasks require to calculate 
numerical values of physical quantities.

We define the “management of units” as the manipu-
lation of base and derived physical units. All physical 
units in this exercise can be expressed in the base-
units meter (m, for lengths), kilograms (kg, for mass-
es), seconds (s, for time), and Ampere (A, for electrical 
current). E.g., the unit Volt (for electric potential) can 
be expressed as (m2kg)/(s2A) using base units. The 
handling of powers of ten, which are expressed by 
letters in front of units, is also part of the management 
of units. The students have to translate the letters like 
k or m (for milli) to powers of ten, in this case 103 and 
10-3, respectively. The powers of ten then have to be 
multiplied, divided and potentiated using the rules 
for potentiation. For example, they need to realize that 
6cm2 is equal to 6·(10-2m)2=6·10-4m2, instead ignoring 
that the power of ten is squared alongside the unit 
and arriving at 6·10-2 m2. In the last step the base units 
have to be translated in a summarising unit and the 
powers of ten into the right letter in front of the units.

The techniques and strategies for the transformation 
of fractions containing physical quantities include 
handling of algebraic and arithmetic terms with frac-

tions. As seen in Figure 3, there are also compound 
fractions (especially due to units), and fractions have 
to be transformed in order to be able to add them. 

Also resources of electrical engineering in a narrower 
sense are needed to solve the second subtask: students 
must know the formula for the reluctance, which is 
R=1/μ·l/A, where μ is the permeability, l is the length, 
and A is the cross-sectional area of the conductor. 
They have to insert the right values for each part of 
the iron core as well as for the two air gaps in order 
to apply the formula to the situation.

For the third subtask, students need to recall the 
formula for the inductance. Initially, students have 
to find a formula, which only contains known pa-
rameters from the problem setting, in this case the 
formula L(d)=N2/RM(d). The maximum value can be 
determined using knowledge presented in the GET-
B-lecture, namely, that the value for the inductance 
decreases the farther the two iron cores are moved 
away from each other. So the inductance is maximized 
if there is no air gap, i.e., the width of the air gap is 
zero. Alternatively L(d) can be interpreted as a func-
tion of d, where the students can use techniques from 
mathematics to find the maximum (minimising the 
denominator). These two different types of reasoning 
for finding a solution are often applicable, i.e., rea-
soning by either calculation or physical mapping, see 
Bing (2008). 

In the fourth part, students need to recall the formula 
for the magnetic flux density bL, which is Φ=bL·AFe,1, i.e., 
the product of the magnetic flux density and the rele-
vant area. In this formula only AFe,1 is known, but there 
is another formula to calculate Φ, namely Φ=(N·I)/RM, 
i.e., the product of the number of windings and the 
electric current divided by the total reluctance. In the 
second formula all physical quantities are known, and 

Figure 3: Calculation of the total reluctance
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by combining the two formulas students can calculate 
the value for bL. They get bL·AFe,1=(N·I)/RM and with the 
help of this, bL=(N·I)/(RM·AFe,1).

This example shows the typical characteristics of 
“equation management”. Initially students recall the 
relevant formulas containing known and unknown 
physical quantities. Then they start to transform 
these equations in order to get unknown quantities 
with the help of known quantities. This can either 
be done systematically by writing down all possibly 
relevant formulas at the beginning of the solution 
process, or step-by-step by starting with one formula 
and in each step trying to replace unknowns with the 
help of known physical quantities. This task is not 
rule based like solving systems of linear equations. 
It is not necessary to derive all the equations from 
general formulas in electric field theory presented in 
the lecture. This is a didactic reduction compared to 
the lecture, which was communicated in the exercise 
classes accompanying the lectures. 

After finishing the calculations experts and students 
used various metacognitive strategies to validate 
their results:

―― Validating of the result with the help of its unit in 
dimensional analysis: As the units of all physical 
quantities are known, one can check, if the units 
on the one side of each equation are the same as 
the units on the other side.

―― Validating of the result with the help of its mag-
nitude: In many cases the lectures, the problems 
in the exercise classes or previously done ex-
periments show the order of magnitude of the 
resulting value.

―― Check whether all information was used: it is a 
tacit agreement in the GET-B-course that all infor-
mation that is mentioned in a problem is needed 
to solve it.

In contrast to the modelling cycle the implicit assump-
tions of the model are not questioned after finishing 
the exercise. On a positive note, in contrast to many 
school students’ behaviour, validation takes place 
in a limited efficient manner, because the students 
expect tasks and results to be realistic, whereas in 
school mathematics often unrealistic, unauthentic 
assumptions and questions are prevalent.

PRELIMINARY RESULTS OF ANALYSING 
STUDENTS’ SOLUTIONS

As we have not yet completed the analysis of students’ 
work, we like just to point out two surprising results, 
where students employed special strategies that we 
did not anticipate. In the third subtask of the problem, 
the maximization of the inductance, all student pairs 
at first took the detour that when they read the word 

“maximum,” they thought they needed to differenti-
ate the term and find the roots of the first derivative. 
This does not lead to a solution, because the maxi-
mum is at the boundary of the interval; and since the 
differentiation itself is not easy, this approach could 
lead to further mistakes. This may be considered as 
a didactic obstacle in the sense of Brousseau having 
origin in school mathematics. In the fourth subtask, 
some pairs described the physical processes with the 
help of differentials like dA or dV, i. e., by application 
of university mathematics. Such argumentations are 
often used in exercises from field theory, which con-
tain applications of Stokes’ and Gauss’ theorems for 
integral vector calculus. The magnetic flux through an 
infinitesimal area was expressed as dΦ=bL·dA, where 
bL is a function of the position. Students then used bL·-
dA to mathematize the problem by seeing that the total 
flux can be computed using a surface integral. We 
observe a typical use of “differentials” in modelling 
physical problems that is not legitimated by mathe-
matical theory. Since bL is constant here, the integral 
method leads to the same simple formula as above, but 
in more general situations, the integral is mandatory. 
The phase of equation management was successfully 
preceded by a phase of deriving equations from more 
general principles. While unnecessary in this case, 
the approach was welcome as it shows further com-
petencies. It depends on the course whether these are 
part of the expected range of competencies or whether 
students are just trained in “equation management.”

FIRST CONCLUSIONS AND OUTLOOK

In summary we can state that our analysis shows that 
it is helpful to modify the modelling cycle as a theoret-
ical tool for describing solution processes of students 
in engineering contexts:

―― The component “cognitive resources” has to be 
added to the modelling cycle.
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―― One cannot distinguish between mathematics 
and the “rest of the world”.

―― Electrical engineering “does not exist” without 
mathematics.

―― The setting up of equations is inseparably inter-
woven with the process of getting mathematical 
results. A division into two separate phases (set-
ting up the model, mathematical solution) as in 
the modelling cycle is not adequate.

Furthermore, we have just started to use the TESES 
we described for analysing students’ work. We will 
validate and extend our research results by devel-
oping additional student-expert-solutions for the re-
maining exercises of the GET-B exam, which require 
the higher mathematics taught at university level to 
a much greater extent than our above example. The 
content of these exercises includes for example ordi-
nary differential equations of first and second order 
(in a task on oscillating circuits) or complex numbers 
(in a task on alternating current), which are the result 
of applying Kirchhoff rules to electrical circuits with 
time-varying currents through resistors, capacitors 
and inductances.

We will moreover analyse task solutions from written 
examinations to the GET-B-course in order to confirm, 
refine and enhance the results from the analysis us-
ing the SES and the video studies with the students. 
We also plan to interview teaching assistants from 
other universities. Although the content of the lec-
tures is nearly identical between different German 
universities, there seem to be many differences in 
the expectations of competences, which can be made 
explicit by these interviews.
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