H. W. Kroto, J. R. Heath, S. C. O-'brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature, vol.196, issue.6042, pp.162-163, 1985.
DOI : 10.1038/318162a0

W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Solid C60: a new form of carbon, Nature, vol.347, issue.6291, pp.354-358, 1990.
DOI : 10.1038/347354a0

J. B. Howard, J. T. Mckinnon, Y. Makarovsky, A. L. Lafleur, and M. E. Johnson, Fullerenes C60 and C70 in flames, Nature, vol.352, issue.6331, pp.139-141, 1991.
DOI : 10.1038/352139a0

N. Komatsu, T. Ohe, and K. Matsushige, A highly improved method for purification of fullerenes applicable to large-scale production, Carbon, vol.42, issue.1, pp.163-167, 2004.
DOI : 10.1016/j.carbon.2003.10.009

R. E. Smalley, Self-assembly of the fullerenes, Accounts of Chemical Research, vol.25, issue.3, pp.98-105, 1992.
DOI : 10.1021/ar00015a001

J. Y. Huang, F. Ding, K. Jiao, and B. I. Yakobson, Real Time Microscopy, Kinetics, and Mechanism of Giant Fullerene Evaporation, Physical Review Letters, vol.99, issue.17, pp.175503-175504, 2007.
DOI : 10.1103/PhysRevLett.99.175503

T. C. Dinadayalane and J. Leszczynski, Remarkable diversity of carbon???carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene, Structural Chemistry, vol.100, issue.6
DOI : 10.1007/s11224-010-9670-2

D. E. Manolopoulos and P. W. Fowler, Molecular graphs, point groups, and fullerenes, The Journal of Chemical Physics, vol.96, issue.10, pp.7603-7614, 1992.
DOI : 10.1063/1.462413

R. C. Haddon, L. E. Brus, and K. Raghavachari, Electronic structure and bonding in icosahedral C60, Chemical Physics Letters, vol.125, issue.5-6, pp.459-464, 1986.
DOI : 10.1016/0009-2614(86)87079-8

X. Lu and Z. F. Chen, ) and Single-Walled Carbon Nanotubes, Chemical Reviews, vol.105, issue.10, pp.3643-3696, 2005.
DOI : 10.1021/cr030093d

I. Fernández, M. Solà, and F. M. Bickelhaupt, Prefer [6,6] over [5,6] Bonds?, Chemistry - A European Journal, vol.105, issue.239, pp.7416-7422, 2013.
DOI : 10.1002/chem.201300648

C. Bingel, Cyclopropanierung von Fullerenen, Chemische Berichte, vol.31, issue.8, pp.1957-1959, 1993.
DOI : 10.1002/cber.19931260829

A. Bolag, J. L?pez-andarias, S. Lascano, S. Soleimanpour, C. Atienza et al., A Collection of Fullerenes for Synthetic Access Toward Oriented Charge-Transfer Cascades in Triple-Channel Photosystems, Angew. Chem. Int. Ed, pp.53-4890, 2014.

Y. Cao, Y. Liang, L. Zhang, S. Osuna, A. M. Hoyt et al., Why Bistetracenes Are Much Less Reactive Than Pentacenes in Diels???Alder Reactions with Fullerenes, Journal of the American Chemical Society, vol.136, issue.30, pp.136-10743, 2014.
DOI : 10.1021/ja505240e

T. E. Shubina, D. I. Sharapa, C. Schubert, D. Zahn, M. Halik et al., Fullerene Van der Waals Oligomers as Electron Traps, Journal of the American Chemical Society, vol.136, issue.31, pp.10890-10893, 2014.
DOI : 10.1021/ja505949m

S. H. Lim, J. Yi, G. M. Moon, C. S. Ra, K. Nahm et al., Method for the Synthesis of Amine-Functionalized Fullerenes Involving SET-Promoted Photoaddition Reactions of ??-Silylamines, The Journal of Organic Chemistry, vol.79, issue.15, pp.79-6946, 2014.
DOI : 10.1021/jo501034t

H. Li, C. Risko, J. H. Seo, C. Campbell, G. Wu et al., Fullerene???Carbene Lewis Acid???Base Adducts, Journal of the American Chemical Society, vol.133, issue.32, pp.133-12410, 2011.
DOI : 10.1021/ja204974m

Y. Li and L. Gan, : Formation of Penta- and Hexaamino[60]fullerenes, The Journal of Organic Chemistry, vol.79, issue.18, pp.8912-8916, 2014.
DOI : 10.1021/jo5015867

Y. Xiao, S. E. Zhu, D. J. Liu, M. Suzuki, X. Lu et al., Regioselective electrosynthesis of rare 1, p.16

L. Echegoyen and L. E. Echegoyen, Electrochemistry of Fullerenes and Their Derivatives, Accounts of Chemical Research, vol.31, issue.9, pp.31-593, 1998.
DOI : 10.1021/ar970138v

J. Lee, Y. Yamakoshi, J. B. Hughes, and J. H. Kim, Mechanism of C60 photoreactivity in water: fate of triplet state and radical anion and production of reactive oxygen species, Environ. Sci. Technol, pp.42-3459, 2008.

S. Perni, P. Prokopovich, J. Pratten, I. P. Parkin, and M. Wilson, Nanoparticles: their potential use in antibacterial photodynamic therapy, Photochemical & Photobiological Sciences, vol.43, issue.44, pp.712-720, 2011.
DOI : 10.1039/c0pp00360c

M. Lens, L. Medenica, and U. Citernesi, Antioxidative capacity of C60 (buckminsterfullerene) and newly synthesized fulleropyrrolidine derivatives encapsulated in liposomes, Biotechnology and Applied Biochemistry, vol.51, issue.3, pp.51-135, 2008.
DOI : 10.1042/BA20080007

J. Lee, Y. Yamakoshi, J. B. Hughes, and J. Kim, Mechanism of C60 photoreactivity in water: fate of triplet state and radical anion and production of reactive oxygen species, Environ. Sci. Technol, pp.42-3459, 2008.

L. Y. Chiang, R. B. Upasani, J. W. Swirczewski, and S. Soled, Evidence of hemiketals incorporated in the structure of fullerols derived from aqueous acid chemistry, Journal of the American Chemical Society, vol.115, issue.13, pp.115-5453, 1993.
DOI : 10.1021/ja00066a014

H. M. Huang, H. C. Ou, S. J. Hsieh, and L. Y. Chiang, Blockage of amyloid ?? peptide-induced cytosolic free calcium by fullerenol-1, carboxylate C60 in PC12 cells, Life Sciences, vol.66, issue.16, pp.1525-1533, 2000.
DOI : 10.1016/S0024-3205(00)00470-7

V. Djordjevi?, A. Djordjevi?, S. Dobri?, R. Injac, D. Vu?kovi? et al., Influence of Fullerenol C<sub>60</sub>(OH)<sub>24</sub> on Doxorubicin Induced Cardiotoxicity in Rats, Influence of Fullerenol C60(OH)24 on Doxorubicin Induced Cardiotoxicity in Rats, pp.525-529, 2006.
DOI : 10.4028/www.scientific.net/MSF.518.525

R. Injac, M. Boskovic, M. Perse, E. Koprivec-furlan, A. Cerar et al., Acute doxorubicin nephrotoxicity in rats with malignant neoplasm can be successfully treated with fullerenol C60(OH)24 via suppression of oxidative stress, Pharmacol. Rep, pp.60-742, 2008.

R. Injac, N. Radic, B. Govedarica, M. Perse, A. Cerar et al., Acute doxorubicin pulmotoxicity in rats with malignant neoplasm is effectively treated with fullerenol C60(OH)24 through inhibition of oxidative stress, Pharmacological Reports, vol.61, issue.2, pp.61-335, 2009.
DOI : 10.1016/S1734-1140(09)70041-6

R. Injac, M. Perse, N. Obermajer, V. Djordjevic-milic, M. Prijatelj et al., Potential hepatoprotective effects of fullerenol C60(OH)24 in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas, Biomaterials, vol.29, issue.24-25, pp.3451-3460, 2008.
DOI : 10.1016/j.biomaterials.2008.04.048

R. Injac, M. Perse, M. Cerne, N. Potocnik, N. Radic et al., Protective effects of fullerenol C60(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer, Biomaterials, vol.30, issue.6, pp.1184-1196, 2009.
DOI : 10.1016/j.biomaterials.2008.10.060

V. M. Torres, B. Srdjenovic, V. Jacevic, V. D. Simic, A. Djordjevic et al., Fullerenol C60(OH)24 prevents doxorubicin-induced acute cardiotoxicity in rats, Pharmacological Reports, vol.62, issue.4, pp.62-707, 2010.
DOI : 10.1016/S1734-1140(10)70328-5

J. Xu, Y. Su, J. Cheng, S. Li, R. Liu et al., Protective effects of fullerenol on carbon tetrachloride-induced acute hepatotoxicity and nephrotoxicity in rats, Carbon, vol.48, issue.5, pp.1388-1396, 2010.
DOI : 10.1016/j.carbon.2009.12.029

K. Stankov, I. Borisev, V. Kojic, L. Rutonjski, G. Bogdanovi? et al., Modification of Antioxidative and Antiapoptotic Genes Expression in irradiated K562 Cells Upon Fullerenol C<SUB>60</SUB>(OH)<SUB>24</SUB> Nanoparticle Treatment, Journal of Nanoscience and Nanotechnology, vol.13, issue.1, pp.13-105, 2013.
DOI : 10.1166/jnn.2013.6847

H. Jin, W. Q. Chen, X. W. Tang, L. Y. Chiang, C. Y. Yang et al., Polyhydroxylated C(60), fullerenols, as glutamate receptor antagonists and neuroprotective agents, J. Neurosci. Res, pp.62-600, 2000.

Y. Saitoh, A. Miyanishi, H. Mizuno, S. Kato, H. Aoshima et al., Super-highly hydroxylated fullerene derivative protects human keratinocytes from UV-induced cell injuries together with the decreases in intracellular ROS generation and DNA damages, Journal of Photochemistry and Photobiology B: Biology, vol.102, issue.1, pp.69-76, 2011.
DOI : 10.1016/j.jphotobiol.2010.09.006

H. An and B. Jin, Fullerenols and Fullerene Alter Cell Growth and Metabolisms of <I>Escherichia</I> <I>coli</I>, Journal of Biomedical Nanotechnology, vol.11, issue.7, pp.1261-1268, 2015.
DOI : 10.1166/jbn.2015.2070

. Seeberger, Fullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats, Exp. Neurol, vol.265, pp.142-151, 2015.

F. Jiao, Y. Liu, Y. Qu, W. Li, G. Zhou et al., Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model, Carbon, vol.48, issue.8, pp.2231-2243, 2010.
DOI : 10.1016/j.carbon.2010.02.032

J. Fan, G. Fang, F. Zeng, X. Wang, and S. Wu, Water-Dispersible Fullerene Aggregates as a Targeted Anticancer Prodrug with both Chemo- and Photodynamic Therapeutic Actions, Small, vol.37, issue.4, pp.613-621, 2013.
DOI : 10.1002/smll.201201456

I. Lamparth and A. Hirsch, Water-soluble malonic acid derivatives of C60 with a defined three-dimensional structure, Journal of the Chemical Society, Chemical Communications, issue.14, pp.1727-1728, 1994.
DOI : 10.1039/c39940001727

J. Yu, M. Guan, F. Li, Z. Zhang, C. Wang et al., Effects of fullerene derivatives on bioluminescence and application for protease detection, Chemical Communications, vol.84, issue.89, pp.11011-11013, 2012.
DOI : 10.1039/c2cc36099c

I. C. Wang, L. A. Tai, D. D. Lee, P. P. Kanakamma, C. K. Shen et al., C(60) and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation, J. Med. Chem, pp.42-4614, 1999.

Y. L. Huang, C. K. Shen, T. Y. Luh, H. C. Yang, K. C. Hwang et al., Blockage of apoptotic signaling of transforming growth factor-beta in human hepatoma cells by carboxyfullerene, European Journal of Biochemistry, vol.254, issue.1, pp.254-292, 1998.
DOI : 10.1046/j.1432-1327.1998.2540038.x

S. S. Ali, J. I. Hardt, and L. L. Dugan, SOD Activity of carboxyfullerenes predicts their neuroprotective efficacy: a structure-activity study, Nanomedicine: Nanotechnology, Biology and Medicine, vol.4, issue.4, pp.283-294, 2008.
DOI : 10.1016/j.nano.2008.05.003

F. Chirico, C. Fumelli, A. Marconi, A. Tinari, E. Straface et al., Carboxyfullerenes localize within mitochondria and prevent the UVB-induced intrinsic apoptotic pathway, Experimental Dermatology, vol.1755, issue.5, pp.16-429, 2007.
DOI : 10.1111/j.1365-2133.2004.05715.x

K. L. Quick, S. S. Ali, R. Arch, C. Xiong, D. Wozniak et al., A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice, Neurobiology of Aging, vol.29, issue.1
DOI : 10.1016/j.neurobiolaging.2006.09.014

T. Komatsu, A. Nakagawa, and X. Qu, Structural and Mutagenic Approach to Create Human Serum Albumin-Based Oxygen Carrier and Photosensitizer, Drug Metabolism and Pharmacokinetics, vol.24, issue.4, pp.287-299, 2009.
DOI : 10.2133/dmpk.24.287

C. Kojima, K. Kono, K. Maruyama, and T. Takagishi, Synthesis of Polyamidoamine Dendrimers Having Poly(ethylene glycol) Grafts and Their Ability To Encapsulate Anticancer Drugs, Bioconjugate Chemistry, vol.11, issue.6, pp.910-917, 2000.
DOI : 10.1021/bc0000583

X. Li, Y. Watanabe, E. Yuba, A. Harada, T. Haino et al., Facile construction of well-defined fullerene???dendrimer supramolecular nanocomposites for bioapplications, Chem. Commun., vol.44, issue.14, pp.51-2851, 2015.
DOI : 10.1039/C4CC09082A

M. Maggini, G. Scorrano, and M. Prato, Addition of Azomethine Ylides to CM: Synthesis, Characterization, and Functionalization of Fullerene Pyrrolidines, J. Am

T. Mashino, N. Usui, K. Okuda, T. Hirota, and M. Mochizuki, Respiratory chain inhibition by fullerene derivatives: hydrogen peroxide production caused by fullerene derivatives and a respiratory chain system, Bioorganic & Medicinal Chemistry, vol.11, issue.7, pp.11-1433, 2003.
DOI : 10.1016/S0968-0896(02)00610-7

T. Mashino, K. Okuda, T. Hirota, M. Hirobe, T. Nagano et al., Inhibition ofE. coli growth by fullerene derivatives and inhibition mechanism, Bioorganic & Medicinal Chemistry Letters, vol.9, issue.20
DOI : 10.1016/S0960-894X(99)00515-6

T. Mashino, D. Nishikawa, K. Takahashi, N. Usui, T. Yamori et al., Antibacterial and Antiproliferative Activity of Cationic Fullerene Derivatives, Bioorg. Med. Chem. Lett, pp.13-4395, 2003.

M. E. Milanesio, M. B. Spesia, M. P. Cormick, and E. N. Durantini, Mechanistic studies on the photodynamic effect induced by a dicationic fullerene C60 derivative on Escherichia coli and Candida albicans cells, Photodiagnosis and Photodynamic Therapy, vol.10, issue.3, pp.320-327, 2013.
DOI : 10.1016/j.pdpdt.2013.01.007

G. Tegos, T. N. Demidova, D. Arcila-lopez, H. Lee, T. Wharton et al., Cationic Fullerenes Are Effective and Selective Antimicrobial Photosensitizers, Chemistry & Biology, vol.12, issue.10, pp.12-1127, 2005.
DOI : 10.1016/j.chembiol.2005.08.014

L. Y. Huang, M. Terakawa, T. Zhiyentayev, Y. Y. Huang, Y. Sawayama et al., Innovative cationic fullerenes as broad-spectrum light-activated antimicrobials, Novel cationic fullerenes as broadspectrum light-activated antimicrobials, pp.442-452, 2010.
DOI : 10.1016/j.nano.2009.10.005

M. B. Spesia, M. E. Milanesio, and E. N. Durantini, Synthesis, properties and photodynamic inactivation of Escherichia coli by novel cationic fullerene C60 derivatives, European Journal of Medicinal Chemistry, vol.43, issue.4, pp.43-853, 2008.
DOI : 10.1016/j.ejmech.2007.06.014

S. A. Lambrechts, M. C. Aalders, D. H. Langeveld-klerks, Y. Khayali, and J. W. Lagerberg, Effect of monovalent and divalent cations on the photoinactivation of bacteria with meso-substituted cationic porphyrins, Photochem Photobiol, pp.79-297, 2004.

M. B. Patel, U. Harikrishnan, N. N. Valand, N. R. Modi, and S. K. Menon, )-one Conjugated Fullerene Nanoparticles as Antimycobacterial and Antimicrobial Agents, Novel Cationic Quinazolin-4(3H)-one Conjugated Fullerene Nanoparticles as Antimycobacterial and Antimicrobial Agents, pp.210-220, 2013.
DOI : 10.1002/ardp.201200371

A. Kumar, G. Patel, and S. K. Menon, Fullerene Isoniazid Conjugate - A Tuberculostat with Increased Lipophilicity: Synthesis and Evaluation of Antimycobacterial Activity, Chemical Biology & Drug Design, vol.102, issue.Suppl., pp.553-557, 2009.
DOI : 10.1111/j.1747-0285.2009.00804.x

M. B. Patel, S. P. Kumar, N. N. Valand, Y. T. Jasrai, and . Menon, Synthesis and biological evaluation of cationic fullerene quinazolinone conjugates and their binding mode with modeled Mycobacterium tuberculosis hypoxanthine-guanine phosphoribosyltransferase enzyme, Journal of Molecular Modeling, vol.25, issue.8, pp.3201-3217, 2013.
DOI : 10.1007/s00894-013-1820-1

M. B. Patel, U. Harikrishnan, N. N. Valand, D. S. Mehta, K. V. Joshi et al., Novel cationic fullerene derivatized s-triazine scaffolds as photoinduced DNA cleavage agents: design, synthesis, biological evaluation and computational investigation, RSC Advances, vol.24, issue.23, pp.8734-8746, 2013.
DOI : 10.1039/c3ra40950c

Z. Hu, W. Guan, W. Wang, L. Huang, X. Tang et al., Synthesis of amphiphilic amino acid C60 derivatives and their protective effect on hydrogen peroxide-induced apoptosis in rat pheochromocytoma cells, Carbon, vol.46, issue.1, pp.99-109, 2008.
DOI : 10.1016/j.carbon.2007.10.041

T. Chen, Y. Y. Li, J. L. Zhang, B. Xu, Y. Lin et al., Protective effect of C(60) -methionine derivate on lead-exposed human SH-SY5Y neuroblastoma cells, J. Appl. Toxicol, pp.31-255, 2011.

Z. Li, F. Zhang, Z. Wang, L. Pan, Y. Shen et al., Fullerene (C60) nanoparticles exert photocytotoxicity through modulation of reactive oxygen species and p38 mitogen-activated protein kinase activation in the MCF-7 cancer cell line, Journal of Nanoparticle Research, vol.42, issue.5, pp.15-2102, 2013.
DOI : 10.1007/s11051-013-2102-7

D. Iohara, M. Hiratsuka, F. Hirayama, K. Takeshita, K. Motoyama et al., Evaluation of Photodynamic Activity of C60/2-Hydroxypropyl-??-Cyclodextrin Nanoparticles, Journal of Pharmaceutical Sciences, vol.101, issue.9, pp.3390-3397, 2012.
DOI : 10.1002/jps.23045

A. Abdulmalik, A. Hibah, B. M. Zainy, A. Makoto, I. Daisuke et al., Preparation of soluble stable C60/human serum albumin nanoparticles via cyclodextrin complexation and their reactive oxygen production characteristics, Life Sciences, vol.93, issue.7, pp.93-277, 2013.
DOI : 10.1016/j.lfs.2013.06.021

A. C. Barron and J. Z. Yang, A new route to fullerene substituted phenylalanine derivatives, Chem. Commun, pp.24-2884, 2004.

J. Z. Yang, K. Wang, J. Driver, J. H. Yang, and A. R. Barron, The use of fullerene substituted phenylalanine amino acid as a passport for peptides through cell membranes, Org. Biomol. Chem., vol.4, issue.2, pp.260-266, 2007.
DOI : 10.1002/chem.200601186

J. G. Rouse, J. Yang, J. P. Ryman-rasmussen, A. R. Barron, and N. A. , Effects of Mechanical Flexion on the Penetration of Fullerene Amino Acid-Derivatized Peptide Nanoparticles through Skin, Nano Letters, vol.7, issue.1, pp.155-160, 2007.
DOI : 10.1021/nl062464m

Y. Xu, J. Zhu, K. Xiang, Y. Li, R. Sun et al., Synthesis and immunomodulatory activity of [60]fullerene???tuftsin conjugates, Biomaterials, vol.32, issue.36, pp.9940-9949, 2011.
DOI : 10.1016/j.biomaterials.2011.09.022

S. H. Friedman, D. L. Decamp, R. P. Sijbesma, G. Srdanov, F. Wudl et al., Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification, Journal of the American Chemical Society, vol.115, issue.15, pp.115-6506, 1993.
DOI : 10.1021/ja00068a005

T. Mashino, K. Shimotohno, N. Ikegami, D. Nishikawa, K. Okuda et al., Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives, Bioorg. Med. Chem. Lett, pp.15-1107, 2005.

S. Durdagi, C. T. Supuran, T. A. Strom, N. Doostdar, M. K. Kumar et al., In Silico Drug Screening Approach for the Design of Magic Bullets: A Successful Example with Anti-HIV Fullerene Derivatized Amino Acids, J. Chem. Inf. Model, pp.49-1139, 2009.

M. Horie, A. Fukuhara, Y. Saito, Y. Yoshida, H. Sato et al., Antioxidant action of sugar-pendant C60 fullerenes, Bioorganic & Medicinal Chemistry Letters, vol.19, issue.20, pp.5902-5904, 2009.
DOI : 10.1016/j.bmcl.2009.08.067

Y. Mikata, S. Takagi, M. Tanahashi, S. Ishii, M. Obata et al., Detection of 1270 nm emission from singlet oxygen and photocytotoxic property of sugar-Pendant [60] fullerenes, Bioorganic & Medicinal Chemistry Letters, vol.13, issue.19, pp.3289-3292, 2003.
DOI : 10.1016/S0960-894X(03)00595-X

S. Tanimoto, S. Sakai, S. Matsumura, D. Takahashi, and K. Toshima, Target-selective photo-degradation of HIV-1 protease by a fullerene-sugar hybrid, Chemical Communications, vol.305, issue.44
DOI : 10.1039/b811726h

S. Tanimoto, S. Sakai, E. Kudo, S. Okada, S. Matsumura et al., Target-Selective Photodegradation of HIV-1 Protease and Inhibition of HIV-1 Replication in Living Cells by Designed Fullerene-Sugar Hybrids, Chemistry - An Asian Journal, vol.74, issue.5, pp.911-914, 2012.
DOI : 10.1002/asia.201101043

R. Rísquez-cuadro, J. M. García-fernández, J. F. Nierengarten, C. Ortiz, and . Mellet, -Iminosugar Balls as Multimodal Ligands for Lectins and Glycosidases: A Mechanistic Hypothesis for the Inhibitory Multivalent Effect, Chemistry - A European Journal, vol.413, issue.49, pp.16791-16803, 2013.
DOI : 10.1002/chem.201303158

I. Nierengarten and J. F. Nierengarten, Fullerene Sugar Balls: A New Class of Biologically Active Fullerene Derivatives, Chemistry - An Asian Journal, vol.15, issue.6, pp.1436-1444, 2014.
DOI : 10.1002/asia.201400133

M. Sánchez-navarro, A. Muñoz, B. M. Illescas, J. Rojo, and N. Martín, [60]Fullerene as Multivalent Scaffold: Efficient Molecular Recognition of Globular Glycofullerenes by Concanavalin???A, Chemistry - A European Journal, vol.11, issue.3, pp.766-769, 2011.
DOI : 10.1002/chem.201002816

R. Bernstein, F. Prat, and C. S. Foote, On the Mechanism of DNA Cleavage by Fullerenes Investigated in Model Systems: Electron Transfer from Guanosine and

S. Samal and K. E. Geckeler, Cyclodextrin???fullerenes: a new class of water-soluble fullerenes, Chemical Communications, vol.13, issue.13, pp.1101-1102, 2000.
DOI : 10.1039/b000710m

Y. Liu, L. Y. Zhao, Y. Chen, P. Liang, and L. Li, A water-soluble ??-cyclodextrin derivative possessing a fullerene tether as an efficient photodriven DNA-cleavage reagent, Tetrahedron Letters, vol.46, issue.14, pp.46-2507, 2005.
DOI : 10.1016/j.tetlet.2005.01.181

J. J. Wang, Z. H. Zhang, W. Wu, and X. Q. Jiang, -Cyclodextrin-[60]fullerene Conjugate and Its DNA Cleavage Performance, Chinese Journal of Chemistry, vol.120, issue.1, pp.32-78, 2014.
DOI : 10.1002/cjoc.201300737

URL : https://hal.archives-ouvertes.fr/jpa-00209906

T. Andersson, G. Westman, O. Wennerstr?m, M. Sundahl, and U. Nmr, Investigation of Water-soluble Fullerene-60-?-Cyclodextrin Complex, J. Chem

B. Z. Zhao, Y. Y. He, P. J. Bilski, and C. F. , ] Fullerene Phototoxicity towards HaCaT Keratinocytes: Type I vs Type II Mechanisms, Chemical Research in Toxicology, vol.21, issue.5, pp.1056-1063, 2008.
DOI : 10.1021/tx800056w

K. Nobusawa, M. Akiyama, A. Ikeda, and M. , Naito, pH responsive smart carrier of [60] fullerene with 6-amino-cyclodextrin inclusion complex for photodynamic therapy, J. Mater. Chem, pp.22-22610, 2012.

A. Ikeda, T. Iizuka, N. Maekubo, R. Aono, J. Kikuchi et al., Cyclodextrin Complexed [60]Fullerene Derivatives with High Levels of Photodynamic Activity by Long Wavelength Excitation, ACS Medicinal Chemistry Letters, vol.4, issue.8, pp.752-756, 2013.
DOI : 10.1021/ml4001535

A. Ikeda, T. Sue, M. Akiyama, K. Fujioka, T. Shigematsu et al., Preparation of Highly Photosensitizing Liposomes with Fullerene-Doped Lipid Bilayer Using Dispersion-Controllable Molecular Exchange Reactions, Organic Letters, vol.10, issue.18, pp.4077-4080, 2007.
DOI : 10.1021/ol8015918

A. Ikeda, M. Mori, K. Kiguchi, K. Yasuhara, J. Kikuchi et al., Advantages and Potential of Lipid-Membrane-Incorporating Fullerenes Prepared by the Fullerene-Exchange Method, Chemistry - An Asian Journal, vol.62, issue.3, pp.605-613, 2012.
DOI : 10.1002/asia.201100792

A. Ikeda, T. Sato, K. Kitamura, K. Nishiguchi, Y. Sasaki et al., Efficient photocleavage of DNA utilising water-soluble lipid membrane-incorporated [60]fullerenes prepared using a [60]fullerene exchange method, Organic & Biomolecular Chemistry, vol.106, issue.16, pp.2907-2909, 2005.
DOI : 10.1039/b507954c

M. Akiyama, A. Ikeda, T. Shintani, Y. Doi, J. Kikuchi et al., Solubilisation of [60]fullerenes using block copolymers and evaluation of their photodynamic activities, Organic & Biomolecular Chemistry, vol.31, issue.6, pp.1015-1019, 2008.
DOI : 10.1039/b719671g

S. Kato, R. Kikuchi, H. Aoshima, Y. Saitoh, and N. Miwa, Defensive effects of fullerene-C60/liposome complex against UVA-induced intracellular reactive oxygen species generation and cell death in human skin keratinocytes HaCaT, associated with intracellular uptake and extracellular excretion of fullerene-C60, Journal of Photochemistry and Photobiology B: Biology, vol.98, issue.2
DOI : 10.1016/j.jphotobiol.2009.11.015

S. Kato, H. Aoshima, Y. Saitoh, and N. Miwa, Fullerene-C60/liposome complex: Defensive effects against UVA-induced damages in skin structure, nucleus and collagen type I/IV fibrils, and the permeability into human skin tissue, Journal of Photochemistry and Photobiology B: Biology, vol.98, issue.1, pp.98-99, 2010.
DOI : 10.1016/j.jphotobiol.2009.11.010

C. Du, H. Xiong, H. Ji, Q. Liu, H. Xiao et al., The antiviral effect of fullerene-liposome complex against influenza virus (H1N1) in vivo, Sci. Res. Essays, pp.7-705, 2012.

L. Xiao, H. Takada, K. Maeda, M. Haramoto, and N. Miwa, Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes, Biomedicine & Pharmacotherapy, vol.59, issue.7, pp.59-351, 2005.
DOI : 10.1016/j.biopha.2005.02.004

L. Xiao, K. Matsubayashi, and N. Miwa, Inhibitory eVect of the water-soluble polymer-wrapped derivative of fullerene on UVA-induced melanogenesis via downregulation of tyrosinase expression in human melanocytes and skin tissues, Arch. Dermatol. Res, pp.299-245, 2007.

S. Kato, H. Aoshima, Y. Saitoh, and N. Miwa, Biological Safety of LipoFullerene composed of Squalane and Fullerene-C60 upon Mutagenesis, Photocytotoxicity, and Permeability into the Human Skin Tissue, Basic & Clinical Pharmacology & Toxicology, vol.2, issue.6, pp.483-487, 2009.
DOI : 10.1111/j.1742-7843.2009.00396.x

G. E. Magoulas, M. Bantzi, D. Messari, E. Voulgari, C. Gialeli et al., Avgoustakis, Synthesis and ?valuation of ?nticancer ?ctivity in Cells of Novel Stoichiometric Pegylated Fullerene-Doxorubicin Conjugates, Pharm. Res, pp.32-1676, 2015.

G. Zhou, I. I. Harruna, W. L. Zhou, W. K. Aicher, and K. E. Geckeler, Nanostructured Thermosensitive Polymers with Radical Scavenging Ability, Chemistry - A European Journal, vol.26, issue.2, pp.13-569, 2007.
DOI : 10.1002/chem.200600590

Y. Iwamoto and Y. Yamakoshi, ???NVP copolymer: a potential material for photodynamic therapy, Chem. Commun., vol.28, issue.46, pp.46-4805, 2006.
DOI : 10.1039/B614305A

S. Oriana, S. Aroua, J. O. Söllner, X. J. Ma, Y. Iwamoto et al., Water-soluble C60? and C70?PVP polymers forbiomaterials with efficient 1O2 generation, Chem. Commun, pp.49-9302, 2013.

M. Hurtgen, A. Debuigne, A. Mouithys-mickalad, R. Jérôme, C. Jérôme et al., Nanohybrids as Potential Photodynamic Cancer Therapy Agents, C60 and Poly(Nvinylpyrrolidone )/C60 Nanohybrids as Potential Photodynamic Cancer Therapy Agents, pp.859-868, 2010.
DOI : 10.1002/asia.200900277

Y. Matsumura and H. Maeda, A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs, Cancer Res, vol.46, pp.6387-6392, 1986.

Y. Ishida, S. Tanimoto, D. Takahashi, and K. Toshima, Photo-degradation of amyloid ?? by a designed fullerene???sugar hybrid, MedChemComm, vol.305, issue.3, pp.212-215, 2010.
DOI : 10.1039/c0md00075b

J. Shi, X. Yu, L. Wang, Y. Liu, J. Gao et al., PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging, Biomaterials, vol.34, issue.37, pp.9666-9677, 2013.
DOI : 10.1016/j.biomaterials.2013.08.049

J. Liu, S. Ohta, A. Sonoda, M. Yamada, M. Yamamoto et al., Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy, Journal of Controlled Release, vol.117, issue.1, pp.104-110, 2007.
DOI : 10.1016/j.jconrel.2006.10.008

B. Du, S. Han, H. Li, F. Zhao, X. Su et al., Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy, Nanoscale, vol.6, issue.12, pp.5411-5426, 2015.
DOI : 10.1039/C4NR04257C

Z. Hu, J. Li, Y. Huang, L. Chen, and Z. Li, nanohybrid for targeting photothermally enhanced photodynamic therapy, RSC Adv., vol.32, issue.1, pp.654-664, 2015.
DOI : 10.1039/C4RA13427C

D. J. Lee, Y. S. Ahn, Y. S. Younb, and E. S. Lee, Poly(ethylene glycol)-crosslinked fullerenes for high efficient phototherapy, Polymers for Advanced Technologies, vol.28, issue.2, pp.24-220, 2013.
DOI : 10.1002/pat.3074

X. Liu, M. Zheng, X. Kong, Y. Zhang, Q. Zeng et al., Separately doped upconversion-C60 nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells, Chemical Communications, vol.8, issue.31, pp.49-3224, 2013.
DOI : 10.1039/c3cc41013g

M. Pinteala and . Barboiu, Hybrid fullerene conjugates as vectors for DNA cell-delivery, J. Mater. Chem. B, vol.3, pp.2433-2446, 2015.

Z. Dou, Y. Xu, H. Sun, and Y. Liu, Synthesis of PEGylated fullerene???5-fluorouracil conjugates to enhance the antitumor effect of 5-fluorouracil, Nanoscale, vol.58, issue.11, pp.4624-4630, 2012.
DOI : 10.1039/c2nr30380a

J. L. Gilmore, X. Yi, L. Quan, and A. V. Kabanov, Novel Nanomaterials for Clinical Neuroscience, Journal of Neuroimmune Pharmacology, vol.93, issue.5, pp.83-94, 2008.
DOI : 10.1007/s11481-007-9099-6

C. M. Lee, S. T. Huang, S. H. Huang, H. W. Lin, H. P. Tsai et al., C60 fullerene-pentoxifylline dyad nanoparticles enhance autophagy to avoid cytotoxic effects caused by the ??-amyloid peptide, C60 fullerene-pentoxifylline dyad nanoparticles enhance autophagy to avoid cytotoxic effects caused by the ?-amyloid peptide, pp.107-114, 2011.
DOI : 10.1016/j.nano.2010.06.009

A. Ikeda, Y. Doi, K. Nishiguchi, K. Kitamura, M. Hashizume et al., Induction of cell death by photodynamic therapy with water-soluble lipid-membrane-incorporated [60]fullerene, Organic & Biomolecular Chemistry, vol.438, issue.439, pp.1158-1160, 2007.
DOI : 10.1039/b701767g

W. Cong, P. Wang, Y. Qu, J. Tang, R. Bai et al., Evaluation of the influence of fullerenol on aging and stress resistance using Caenorhabditis elegans, Biomaterials, vol.42, pp.42-78, 2015.
DOI : 10.1016/j.biomaterials.2014.11.048

P. Seeberger, Fullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats

H. An and B. Jin, Fullerenols and Fullerene Alter Cell Growth and Metabolisms of <I>Escherichia</I> <I>coli</I>, Journal of Biomedical Nanotechnology, vol.11, issue.7, pp.1261-1268, 2015.
DOI : 10.1166/jbn.2015.2070

M. Prato, [60]Fullerene chemistry for materials science applications, Journal of Materials Chemistry, vol.7, issue.7, pp.1097-1109, 1997.
DOI : 10.1039/a700080d

E. B. Zeynalov, N. S. Allen, and N. I. Salmanova, Radical scavenging efficiency of different fullerenes C60???C70 and fullerene soot, Polymer Degradation and Stability, vol.94, issue.8, pp.94-1183, 2009.
DOI : 10.1016/j.polymdegradstab.2009.04.027

A. W. Jensen, S. R. Wilson, and D. I. Schuster, Biological applications of fullerenes, Bioorganic & Medicinal Chemistry, vol.4, issue.6, pp.767-779, 1996.
DOI : 10.1016/0968-0896(96)00081-8

S. Z. Wang, R. M. Gao, F. M. Zhou, and M. Selke, Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy, Journal of Materials Chemistry, vol.14, issue.4
DOI : 10.1039/b311429e

A. Trpkovic, B. Todorovic-markovic, and V. Trajkovic, Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress, Archives of Toxicology, vol.30, issue.6, pp.1809-1827, 2012.
DOI : 10.1007/s00204-012-0859-6

M. Prato and D. M. Guldi, Excited-state properties of C60 fullerene derivatives, Acc. Chem. Res, vol.33, pp.695-703, 2000.

L. L. Dugan, D. M. Turetsky, C. Du, D. Lobner, M. Wheeler et al., Carboxyfullerenes as neuroprotective agents, Proceedings of the National Academy of Sciences, vol.94, issue.17, pp.94-9434, 1997.
DOI : 10.1073/pnas.94.17.9434

F. Prat, R. Stackow, R. Bernstein, W. Y. Qian, Y. Rubin et al., Triplet-State Properties and Singlet Oxygen Generation in a Homologous Series of Functionalized Fullerene Derivatives, The Journal of Physical Chemistry A, vol.103, issue.36, pp.7230-7235, 1999.
DOI : 10.1021/jp991237o

N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S. R. Wilson et al., [60]Fullerene is a Powerful Antioxidant in Vivo with No Acute or Subacute Toxicity, Nano Letters, vol.5, issue.12
DOI : 10.1021/nl051866b