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Abstract

Random forests are ensemble learning methods introduced by ? that operate
by averaging several decision trees built on a randomly selected subspace of the
data set. Despite their widespread use in practice, the respective roles of the
different mechanisms at work in Breiman’s forests are not yet fully understood,
neither is the tuning of the corresponding parameters. In this paper, we study
the influence of two parameters, namely the subsampling rate and the tree depth,
on Breiman’s forests performance. More precisely, we show that forests based
on subsampling and forests whose tree construction is terminated early have
similar performances, as long as their respective parameters (subsampling rate
and tree depth) are well chosen. Moreover, experiments show that a proper
tuning of these parameters leads in most cases to an improvement of Breiman’s
original forests in terms of mean squared error.

Index Terms — Random forests, randomization, parameter tuning, subsam-
pling, tree depth.

1 Introduction

Random forests are a class of learning algorithms used to solve pattern recognition
problems. As ensemble methods, they grow many base learners (in this case, decision
trees) and aggregate them to predict. Building several different trees from a single
data set requires to randomize the tree building process by, for example, resampling
the data set. Thus, there exists a large variety of random forests, depending on how
trees are designed and how randomization is introduced in the whole procedure.

One of the most popular random forests is that of ? which grows trees based on
CART procedure (Classification And Regression Trees, ?) and randomizes both the
training set and the splitting variables. Breiman’s (?) random forests have been
under active investigation during the last decade mainly because of their good prac-
tical performance and their ability to handle high-dimensional data sets. They are
acknowledged to be state-of-the-art methods in fields such as genomics (?) and pat-
tern recognition (?), just to name a few. The ease of the implementation of random
forests algorithms is one of their key strengths and has greatly contributed to their
widespread use. Indeed, a proper tuning of the different parameters of the algorithm
is not mandatory to obtain a plausible prediction, making random forests a turn-key
solution to deal with large, heterogeneous data sets.
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Several authors studied the influence of the parameters on random forests accuracy.
For example, the number M of trees in the forests has been thoroughly investigated
by ? and ?. It is easy to see that the computational cost for inducing a forest
increases linearly with M , so a good choice for M results from a trade-off between
computational complexity and accuracy (M must be large enough for predictions to
be stable). ? argued that in micro-array classification problems, the particular value
of M is irrelevant, assuming that M is large enough (typically over 500). Several
recent studies provided theoretical guidance for choosing M . ? gives an explicit
upper bound on forest accuracy which depends on the number of trees. ? and ?
focus on the pointwise distribution of random forest estimate and establish a central
limit theorem for random forests prediction together with a method to estimate their
variance. All in all, the role of the number M of trees on the forest prediction is
broadly understood.

Breiman’s forests depend on three other parameters: the number an of data points
selected to build each tree, the number mtry of preselected variables along which
the best split is chosen, and the minimum number nodesize of data points in each
leaf of each tree. The subsampling rate an/n controls the percentage of observations
used to make each tree estimate. It turns out that the subsampling step is a key
element to design consistent forests based on inconsistent trees (?). The parameter
mtry regulates how much randomization is injected into the splitting procedure. A
critical case is reached by setting mtry = d: the best split is chosen among all possible
variables, therefore no additional randomness is put on the splitting procedure. The
effect of mtry was discussed in detail by ? and ? who claimed that the default value
(mtry = d/3, where d is the number of input variables) is either optimal or too small,
therefore leading to no global understanding of this parameter. The story is roughly
the same regarding the parameter nodesize (?), which governs the tree depth: small
nodesize values lead to a deep tree whose terminal cells result from a large number
of consecutive splits. Unfortunately, there are no theoretical guarantees to support
the default values of parameters or any of data-driven tuning process proposed in the
literature.

Our objective in this paper is two-fold: (i) to provide a theoretical framework to
analyze jointly the influence of the subsampling step and the tree depth (which can
be parametrized by either nodesize or maxnode) on median forest, close in spirit to
Breiman’s original algorithm; (ii) to implement several experiments to see how our
theoretical findings can be extended to Breiman’s forests. The paper is organized
as follows. Section 2 is devoted to notations and presents Breiman’s random forests
algorithm. To carry out a theoretical analysis of the subsample size and the tree
depth, we study in Section 3 median forests. We establish an upper bound for the
risk of median forests and by doing so, we highlight the fact that subsampling and
tree depth have similar influence on median forest predictions. To confirm that these
results still hold for Breiman’s forests, we implement numerous experiments in Section
4. Results are discussed in Section 5 and proofs are postponed to Section 6.

2 First definitions

2.1 General framework

In this paper, we consider a training sample Dn = {(X1, Y1), . . . , (Xn, Yn)} of [0, 1]d×
R-valued independent and identically distributed observations of a random pair (X,
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Y ), where E[Y 2] < ∞. We denote by X = (X(1), . . . , X(d)) the input variables and
by Y the response variable. We wish to estimate the regression function m(x) =
E [Y |X = x]. In this context, we want to build an estimate mn : [0, 1]d → R of m,
based on the data set Dn.

Yes

Yes YesNo

No

No

Figure 1: A decision tree of depth k = 2 in dimension d = 2.

Random forests are regression methods based on a collection of M randomized trees.
A decision tree is an estimate that recursively split the input space in order to make
a prediction (see Figure 1). Instances of decision trees such as Breiman’s trees and
median trees are described below. Mathematically speaking, a tree estimate satisfies,
for all x ∈ [0, 1]d,

mn(x,Dn) =

n∑
i=1

Yi
1Xi∈An(x,Dn)

Nn(x,Dn)
,

where An(x,Dn) is the terminal cell containing x and Nn(x,Dn) is the number of
observations in this cell.

Now, let us consider some randomization of the tree construction, where some ran-
domness Θ, independent of the training set, is introduced in the building process. In
practice, the variable Θ can be used to resample the data set or to select the candidate
directions or positions for splitting. The corresponding tree estimate at a given point
x ∈ [0, 1]d then writes

mn(x,Θ,Dn) =

n∑
i=1

Yi
1Xi∈An(x,Θ,Dn)

Nn(x,Θ,Dn)
,

where the notations are the same as above. Since we are interested in a collection of
trees, we let Θ1, . . . ,ΘM be independent random variables, distributed as the generic
random variable Θ, independent of the sample Dn. The predictions of the M ran-
domized trees are then averaged to obtain the random forest prediction

mM,n(x,Θ1, . . . ,ΘM ,Dn) =
1

M

M∑
j=1

mn(x,Θj ,Dn). (1)

By the law of large numbers, for any fixed x, conditional on Dn, the finite forest
estimate tends to the infinite forest estimate

m∞,n(x,Dn) = EΘ [mn(x,Θ,Dn)] ,
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where EΘ denotes the expectation with respect to the random variable Θ only. For
the sake of simplicity, we will omit the explicit dependence in the data set Dn in
all formulas. Thus, m∞,n(x,Dn) will simply be written as m∞,n(x). Since we carry
out our analysis within the L2 regression estimation framework, we say that m∞,n is
consistent if its risk, E[m∞,n(X)−m(X)]2, tends to zero, as n goes to infinity.

2.2 Breiman’s forests

Breiman’s (?) forest is one of the most used random forest algorithms. In
Breiman’s forests, each node of a single tree is associated with a hyper-rectangular
cell included in [0, 1]d. The root of the tree is [0, 1]d itself and, at each step of the
tree construction, a node (or equivalently its corresponding cell) is split in two parts.
The terminal nodes (or leaves), taken together, form a partition of [0, 1]d. In details,
the algorithm works as follows:

1. Grow M trees as follows:

(a) Prior to the j-th tree construction, select uniformly with replacement, an
data points among Dn. Only these an observations are used in the tree
construction.

(b) Consider the cell [0, 1]d.

(c) Select uniformly without replacement mtry coordinates among {1, . . . , d}.
(d) Select the split minimizing the CART-split criterion (see ??, for details)

along the pre-selected mtry directions.

(e) Cut the cell at the selected split.

(f) Repeat (c)−(e) for the two resulting cells until each cell of the tree contains
less than nodesize observations.

(g) For a query point x, the j-th tree outputs the average mn(x,Θj) of the Yi
falling into the same cell as x.

2. For a query point x, Breiman’s forest outputs the average mM,n(x,Θ1, . . . ,ΘM )
of the predictions given by the M trees.

The whole procedure depends on four parameters: the number M of trees, the number
an of resampled data points in each tree, the number mtry of pre-selected directions
for splitting, and the maximum number nodesize of observations in each leaf. By
default in the R package randomForest, M is set to 500, an = n (bootstrap samples
are used to build each tree), mtry = d/3 and nodesize= 5.

Let us emphasize that the randomization at work in Breiman’s forests is composed of
the sampling of data points and the choice of eligible directions for splitting in each
cell. Thus, for the j-th tree, the variable Θj is nothing but a large vector containing
first the indices of observations selected to build the j-th tree and then the variables
eligible for splitting for each cell. Writing explicitly the components of Θ demands
a lot of notations and is not vital for our analysis. Hence, we will not fall into this
pitfall.

Note that selecting the split that minimizes the CART-split criterion is equivalent to
selecting the split such that the two resulting cells have a minimal (empirical) variance
(regarding the Yi falling into each of the two cells).
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3 Theoretical results

The numerous mechanisms at work in Breiman’s forests, such as the resampling step,
the CART-criterion and the trees aggregation, make the whole procedure difficult to
theoretically analyze. Most attempts to understand random forest algorithms (see
e.g., ???) have focused on simplified procedures, ignoring the resampling step and/or
replacing the CART-split criterion by a data independent procedure more amenable
to analysis. On the other hand, recent studies try to dissect the original Breiman’s
algorithm in order to prove its asymptotic normality (??) or its consistency (?).
When studying the original algorithm, one faces the complexity of the algorithm thus
requiring high-level mathematics to prove insightful—but rough— results.

In order to provide theoretical guarantees on the parameter values of random forests,
we focus in this section on a simplified random forest called median forest (see, for
example, ?, for details on median tree). Median forests construction depends only on
the Xi’s making them a good tradeoff between the complexity of Breiman’s (?) forests
and the simplicity of totally non adaptive forests, whose construction is independent
of the data set.

The interest of studying median forests, compared to forests whose construction is
independent of both Xi and Yi, lies in the fact that they can benefit from subsampling.
Indeed, ? proves that subsampled median forests are consistent even if each median
tree in the forest is not, therefore highlighting the nice effect of subsampling on median
forests. Besides, median forests can be tuned such that each leaf of each tree contains
exactly one observation, thus being close to Breiman’s forests.

3.1 Median Forests

We now describe the construction of median forest. In the spirit of Breiman’s (?)
algorithm, before growing each tree, data are subsampled, that is an points (an < n)
are selected, without replacement. Then, each split is performed on an empirical
median along a coordinate, chosen uniformly at random among the d coordinates.
Recall that the median of n real valued random variables X1, . . . , Xn is defined as
the only X(`) satisfying Fn(X(`−1)) ≤ 1/2 < Fn(X(`)), where the X(i)’s are ordered
increasingly and Fn is the empirical distribution function of X. Note that data points
on which splits are performed are not sent down to the resulting cells. This is done
to ensure that data points are uniformly distributed on the resulting cells (otherwise,
there would be at least one data point on the edge of a resulting cell, and thus the
data points distribution would not be uniform on this cell). Finally, the algorithm
stops when each cell has been cut exactly kn times, i.e., nodesize= dan2−kne. The
parameter kn, also known as the tree depth, is assumed to verify an2−kn ≥ 4. The
overall construction process is detailed below.

1. Grow M trees as follows:

(a) Prior to the j-th tree construction, select uniformly without replacement,
an data points among Dn. Only these an observations are used in the tree
construction.

(b) Consider the cell [0, 1]d.

(c) Select uniformly one coordinate j among {1, . . . , d} without replacement.
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(d) Cut the cell at the empirical median of the X
(j)
i (1 ≤ i ≤ n) falling into

the cell, along the preselected direction.

(e) Repeat (c) − (d) for the two resulting cells until each cell has been cut
exactly kn times.

(f) For a query point x, the j-th tree outputs the average m(x,Θj) of the Yi
falling into the same cell as x.

2. For a query point x, the median forest outputs the averagemM,n(x,Θ1, . . . ,ΘM )
of the predictions given by the M trees.

3.2 Main theorem

Instead of studying the risk of the finite median forest mM,n, we focus on the risk of
its infinite counterpart

m∞,n(x) = E[mn(x,Θ)],

obtained by setting M → ∞. Theorem 3.1 presents an upper bound of the mean
squared error of the infinite median random forests m∞,n.

Theorem 3.1. Assume that Y = m(X) + ε, where the noise ε satisfies, for all
x ∈ [0, 1]d, E[ε|X = x] = 0 and V[ε|X = x] ≤ σ2 < ∞. Moreover, X is uniformly
distributed on [0, 1]d and m is L-Lipschitz continuous. Then, for all n, for all x ∈
[0, 1]d,

E
[
m∞,n(x)−m(x)

]2 ≤ 2σ2 2k

n
+ dL2C1

(
1− 3

4d

)k
. (2)

In addition, let β = 1− 3/4d. The right-hand side is minimal for

kn =
1

ln 2− lnβ

[
ln(n) + C2

]
, (3)

under the condition that an ≥ C3n
ln 2

ln 2−ln β . For these choices of kn and an, we have

E
[
m∞,n(x)−m(x)

]2 ≤ C4n
ln β

ln 2−ln β . (4)

In practice, we cannot compute infinite forests. Thus, we are naturally interested in
the consistency of finite forests. Fortunately, inequality (4) in Theorem 3.1 can be
extended to finite median forests by using Theorem 3.3 in ? if

M = O
(
n

− ln β
ln 2−ln β

)
.

Thus, the rate of consistency and the following analysis are still valid for finite forests.

Equation (2) stems from the estimation/approximation error decomposition of median
forests. The first term in equation (2) corresponds to the estimation error of the forest
as in ? or ? whereas the second term is the approximation error of the forest, which
decreases exponentially in k. Note that this decomposition is consistent with the
existing literature on random forests. Two common assumptions to prove consistency
of simplified random forests are n/2k → ∞ and k → ∞, which respectively control
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the estimation and approximation of the forest. According to Theorem 3.1, making
these assumptions for median forests results in their consistency.

Note that the estimation error of a single tree grown with an observations is of order
2k/an. Thus, because of the subsampling step (i.e., since an < n), the estimation error
of median forests 2k/n is smaller than that of a single tree. The variance reduction
of random forests is a well-known property, already noticed by ? for a totally non
adaptive forest, and by ? in the case of median forests. In our case, we exhibit an
explicit bound on the forest variance, which allows us to precisely compare it to the
individual tree variance therefore highlighting a first benefit of median forests over
singular trees.

Now, let us consider the second term in equation (2). In the levels close to the root,
a split is close to the center of a side of a cell (since X is uniformly distributed over
[0, 1]d). Thus, for all k small enough, the approximation error of median forests should
be close to that of centred forests studied by ?. Surprisingly, the rate of consistency
of median forests is faster than that of centred forest established in ?, which is equal
to

E
[
mcc
∞,n(X)−m(X)

]2 ≤ Cn −3
4d ln 2+3 , (5)

where mcc
∞,n stands for the centred forest estimate. A close inspection of the proof of

Proposition 2.2 in ? shows that it can be easily adapted to match the (lower) upper
bound in Theorem 3.1.

Noteworthy, the fact that the upper bound (4) is sharper than (5) appears to be
important in the case where d = 1. In that case, according to Theorem 3.1, for all n,
for all x ∈ [0, 1]d,

E
[
m∞,n(x)−m(x)

]2 ≤ Cn−2/3,

which is the minimax rate over the class of Lipschitz functions (see, e.g., ??). This was
to be expected since, in dimension one, median random forests are simply a median
tree which is known to reach minimax rate (?). Unfortunately, for d = 1, the centred
forest bound (5) turns out to be suboptimal since it results in

E
[
mcc
∞,n(X)−m(X)

]2 ≤ Cn −3
4 ln 2+3 . (6)

Finally, note that Theorem 3.1 provides the pointwise rate of consistency of m∞,n.
Thus, median forests are pointwise consistent, contrary to Breiman’s forests which
are thought to be inconsistent for some particular query point x (see, e.g., ?).

Theorem 3.1 allows us to derive rates of consistency for two particular forests: the
partially grown median forest, where no subsampling is performed prior to building
each tree, and the fully grown median forest, where each leaf contains a small number
of points. Corollary 1 deals with partially grown median forests, also called small-tree
median forests.

Corollary 1 (Small-tree median forests). Let β = 1 − 3/4d. Consider a median
forest without subsampling (i.e., an = n) and such that the parameter kn satisfies (3).
Under the same assumptions as in Theorem 3.1, we have, for all n, for all x ∈ [0, 1]d,

E
[
m∞,n(x)−m(x)

]2 ≤ C4n
ln β

ln 2−ln β .
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Up to an approximation, Corollary 1 is the counterpart of Theorem 2.2 in ? but
tailored for median forests, in which each tree is built using the full training sample
and each split is always performed at the median of the selected variable. Indeed, the
rate of consistency provided in Theorem 2.2 for centred forests and that of Corollary
1 for median forests are similar. Note that, for both forests, the optimal depth kn of
each tree is the same.

Corollary 2 handles the case of fully grown median forests, that is forests which contain
a small number of points in each leaf. Indeed, note that since kn = log2(an)− 2, the
number of observations in each leaf varies between 4 and 8.

Corollary 2 (Fully grown median forest). Let β = 1− 3/4d. Consider a fully grown
median forest whose parameters kn and an satisfy kn = log2(an)−2. Under the same
assumptions as in Theorem 3.1, the optimal choice for an that minimizes the L2 error
in (2) is then given by (3), that is

an = C3n
ln 2

ln 2−ln β .

In this case, for all n, for all x ∈ [0, 1]d,

E
[
m∞,n(x)−m(x)

]2 ≤ C4n
ln β

ln 2−ln β .

Whereas each individual tree in the fully developed median forest is inconsistent (since
each leaf contains a small number of points), the whole forest is consistent and its
rate of consistency is provided by Corollary 2. Besides, Corollary 2 provides us with
the optimal subsampling size for fully developed median forests.

Provided a proper parameter tuning, partially grown median forests without subsam-
pling and fully grown median forests (with subsampling) have similar performance.
A close look at Theorem 3.1 shows that the subsampling size has no effect on the
performance, provided it is large enough. The parameter of real importance is the
tree depth kn. Thus, fixing kn as in equation (3), and by varying the subsampling rate
an/n one can obtain random forests whose trees are more-or-less deep, all satisfying
the optimal bound in Theorem 3.1. In this way, Corollary 1 and 2 are simply two
particular examples of such forests.

Although our analysis sheds some light on the role of subsampling and tree depth,
the statistical performance of median forests does not allow us to choose between
small-tree forests and subsampled forests. Interestingly, note that these two types
of random forests can be used in two different contexts. If one wants to obtain fast
predictions, then subsampled forests, as described in Corollary 2, are to be preferred
since their computational time is lower than small-tree forests (described in Corollary
1). However, if one wants to build more accurate predictions, smal-tree random forests
have to be chosen since the recursive random forest procedure allows to build several
forests of different tree depths in one run, therefore allowing to select the best model
among these forests.

4 Experiments

In the light of Section 3, we carry out some simulations to investigate (i) how small-
tree forests and subsampled forests compare with Breiman’s forests and (ii) the influ-
ence of subsampling size and tree depth on Breiman’s procedure. To do so, we start
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by defining various regression models on which the several experiments are based.
Throughout this section, we assess the forest performances by computing their em-
pirical L2 error.

Model 1: n = 800, d = 50, Y = X̃2
1 + exp(−X̃2

2 )

Model 2: n = 600, d = 100, Y = X̃1X̃2 + X̃2
3 − X̃4X̃7 + X̃8X̃10 − X̃2

6 +N (0, 0.5)

Model 3: n = 600, d = 100, Y = − sin(2X̃1) + X̃2
2 + X̃3 − exp(−X̃4) +N (0, 0.5)

Model 4: n = 600, d = 100, Y = X̃1 + (2X̃2 − 1)2 + sin(2πX̃3)/(2 − sin(2πX̃3)) +
sin(2πX̃4) + 2 cos(2πX̃4) + 3 sin2(2πX̃4) + 4 cos2(2πX̃4) +N (0, 0.5)

Model 5: n = 700, d = 20, Y = 1X̃1>0 + X̃3
2 + 1X̃4+X̃6−X̃8−X̃9>1+X̃10

+ exp(−X̃2
2 ) +

N (0, 0.5)

Model 6: n = 500, d = 30, Y =
∑10
k=1 1X̃3

k<0 − 1N (0,1)>1.25

Model 7: n = 600, d = 300, Y = X̃2
1 + X̃2

2 X̃3 exp(−|X̃4|) + X̃6 − X̃8 +N (0, 0.5)

Model 8: n = 500, d = 1000, Y = X̃1 + 3X̃2
3 − 2 exp(−X̃5) + X̃6

For all regression frameworks, we consider covariates X = (X1, . . . , Xd) that are
uniformly distributed over [0, 1]d. We also let X̃i = 2(Xi − 0.5) for 1 ≤ i ≤ d. Some
of these models are toy models (Model 1, 5-8). Model 2 can be found in ? and
Models 3-4 are presented in ?. All numerical implementations have been performed
using the free R software. For each experiment, the data set is divided into a training
set (80% of the data set) and a test set (the remaining 20%). Then, the empirical
risk (L2 error) is evaluated on the test set.

4.1 Tree depth

We start by studying Breiman’s original forests and small-tree Breiman’s forests (in
which the tree depth is limited). Breiman’s forests are the standard procedure im-
plemented in the R package randomForest, with the parameters default values, as
described in Section 2. Small-tree Breiman’s forests are similar to Breiman’s forests
except that the tree depth is controlled via the parameter maxnodes (which corre-
sponds to the number of leaves in each tree) and that the whole sample Dn is used
to build each tree (without any resampling step). However, since there is a compe-
tition between parameters maxnodes and nodesize, we fix nodesize = 1 for both
Breiman’s forests and small-tree Breiman’s forests.

In Figure 2, we present, for the Models 1-8 introduced previously, the evolution of the
empirical risk of small-tree forests for different numbers of terminal nodes. We add the
representation of the empirical risk of Breiman’s original forest in order to compare all
forests errors at a glance. Every sub-figure of Figure 2 presents forests built with 500
trees. The printed errors are obtained by averaging the risks of 50 forests. Because of
the estimation/approximation compromise, we expect the empirical risk of small-tree
forests to be decreasing and then increasing, as the number of leaves grows. In most
of the models, it seems that the estimation error is too low to be detected, this is why
several risks in Figure 2 are only decreasing.

For every model, we can notice that small-tree forests performance is comparable with
the one of standard Breiman’s forest, as long as the number of leaves is well chosen.
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For example, for the Model 1, a small-tree forest with approximately 110 leaves for
each tree has the same empirical risk as the standard Breiman’s forest. In the original
algorithm of Breiman’s forest, the construction of each tree uses a bootstrap sample
of the data. For the small-tree forests, the whole data set is used for each tree, and
then the randomness comes only from the pre-selected directions for splitting. The
performances of bootstrapped and small-tree forests are very alike. Thus, bootstrap
seems not to be the cornerstone of the Breiman’s forest practical superiority to other
regression algorithms. Indeed, as highlighted in the simulations, Breiman’s forests are
outperformed by small-tree forests, provided a good choice of the tree depth.

In order to study the optimal number of terminal nodes (maxnodes parameter in the
R algorithm), we draw the same curves as in Figure 2, for different learning data
set sizes (n = 100, 200, 300 and 400). For each size of the learning set, the optimal
maxnodes values are plotted in the last graph, where the optimal maxnodes value m?

is defined as

m? = min{m : |L̂m −min
r
L̂r| < 0.05× (max

r
L̂r −min

r
L̂r)}

where L̂r is the risk of the forest built with the parameter maxnodes= r. The results
can be seen in Figure 3. According to the last sub-figure in Figure 3, the optimal
maxnodes value seems to be proportional to the sample size. For Model 1, the
optimal value m? seems to verify 0.25n < m? < 0.3n. The other models show a
similar behaviour, as it can be seen in Figure 4.

We also present the L2 errors of small-tree Breiman’s forests for different number of
terminal nodes (10%, 30%, 63%, 80% and 100% of the sample size), when the sample
size is fixed, for Models 1-8. The results can be found in Figure 5 in the form of
box-plots. We can notice that the forests such that maxnodes= 0.3n give similar
(Model 5) or best (Model 6) performances than the standard Breiman’s forest.

4.2 Subsampling

In this section, we study the influence of subsampling on Breiman’s forests by com-
paring the original Breiman’s procedure with subsampled Breiman’s forests. Subsam-
pled Breiman’s forests are nothing but Breiman’s forests where the subsampling step
consists in choosing an observations without replacement (instead of choosing n ob-
servations among n with replacement), where an is the subsample size. Comparison
of Breiman’s forests and subsampled Breiman’s forests is presented in Figure 6 for
the Models 1-8 introduced previously. More precisely, we can see the evolution of
the empirical risk of subsampled forests with different subsampling values, and the
empirical risk of the Breiman’s forest as a reference. Every sub-figure of Figure 6
presents forests built with 500 trees. The printed errors are obtained by averaging
the risks of 50 forests.

For every model, we can notice that subsampled forests performance is comparable
with the one of standard Breiman’s forest, as long as the subsampling parameter is well
chosen. For example, a forest with a subsampling rate of 50% has the same empirical
risk as the standard Breiman’s forest, for Model 2. Once again, the similarity
between bootstrapped and subsampled Breiman’s forests moves aside bootstrap as
a performance criteria. Thus, as shown in the simulations, the bootstrap step is not
a key component of Breiman’s forests since they are outperformed by subsampled
Breiman’s forests (up to a proper tuning of the subsample size, see also ?).
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We want of course to study the optimal subsampling size (sampsize parameter in the
R algorithm). For this, we draw the curves of Figure 6 for different learning data set
sizes, the same as in Figure 3. We also copy in an other graph the optimal subsample
size a?n that we found for each size of the learning set. The optimal subsampling size
a?n is defined as

a?n = min{a : |L̂a −min
s
L̂s| < 0.05× (max

s
L̂s −min

s
L̂s)}

where L̂s is the risk of the forest with parameter sampsize = s. The results can be
seen in Figure 7. The optimal subsampling size seems, once again, to be proportional
to the sample size, as illustrated in the last sub-figure of Figure 7. For Model 1,
the optimal value a?n seems to be close to 0.8n. The other models show a similar
behaviour, as it can be seen in Figure 8.

Then we present, in Figure 9, the L2 errors of subsampled Breiman’s forests for
different subsampling sizes (0.4n, 0.5n, 0.63n and 0.9n), when the sample size is
fixed, for Models 1-8. We can notice that the forests with a subsampling size of
0.63n give similar performances than the standard Breiman’s forests. This is not
surprising. Indeed, a bootstrap sample contains around 63% of distinct observations.
Moreover the high subsampling sizes, around 0.9n, lead to small L2 errors. It may
arise from the probably high signal/noise rate. In each model, when the noise is
increasing, the results, exemplified in Figure 10, are less obvious. That is why we
can lawfully use the subsampling size as an optimization parameter for the Breiman’s
forest performance.

5 Discussion

In this paper, we study the role of subsampling step and tree depth in both median
and Breiman’s forests procedure. By analyzing median forests, a simpler but close
version of Breiman’s forests, we show that the performance of subsampled median
forests and that of small-tree median forests are similar, provided a proper tuning of
the parameters of interest (subsample size and tree depth respectively).

The extended experiments have shown similar results: Breiman’s forests can be out-
performed by either subsampled or small-tree Breiman’s forests by properly tuning
parameters. Noteworthy, tuning tree depth can be done at almost no additional cost
while running Breiman’s forests (due to the intrinsic recursive nature of forests). How-
ever if one is interested in a faster procedure, subsampled Breiman’s forests are to be
preferred to small-tree forests.

As a by-product, our analysis also shows that there is no particular interest in boot-
strapping data instead of subsampling: in our experiments, bootstrap is comparable
(or worse) than a proper subsampling tuning. This sheds some light on several previ-
ous theoretical analysis where the bootstrap step was replaced by subsampling, which
is more amenable to analysis. Similarly, proving theoretical results on fully grown
Breiman’s forests turned out to be extremely difficult. Our analysis shows that there
is no theoretical background for considering default parameters in Breiman’s forests
instead of small-tree or subsampled Breiman’s forests, which turn out to be easier to
examine.
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Figure 2: Comparison of standard Breiman’s forests (B. RF) against small-tree Breiman’s
forests in terms of L2 error.
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Figure 3: First four plots: L2 error of small-tree and standard Breiman’s forests in Model
1 for different sizes of the training set (ranging from 100 to 400); last plot: optimal values
of the number of terminal nodes in Model 1.
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Figure 4: Optimal values of the number of terminal nodes.
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Figure 5: Comparison of standard Breiman’s forests against several small-tree Breiman’s
forests in terms of L2 error.
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Figure 6: Standard Breiman forests versus subsampled Breiman forests.
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Figure 7: First four plots: L2 error of subsampled and Breiman’s forests in Model 1 for
different sizes of the training set (ranging from 100 to 400); last plot: optimal values of the
subsample size in Model 1.
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Figure 8: Optimal values of subsample size.
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Figure 9: Standard Breiman forests versus several subsampled Breiman forests.
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Figure 10: Standard Breiman forests versus several subsampled Breiman forests (noisy mod-
els).

20



6 Proofs

Proof of Theorem 3.1. Let us start by recalling that the infinite median random forest
estimate m∞,n can be written as a local averaging estimate

m∞,n(x) = EΘ[mn(x,Θ)] = EΘ

[ n∑
i=1

Wni(x)Yi

]
=

n∑
i=1

W∞ni (x)Yi,

where

W∞ni (x) = EΘ[Wni(x,Θ)] and Wni(x,Θ) =
1Xi∈An(x,Θ)

Nn(x,Θ)
.

Since An(x,Θ) is the cell containing x in the tree built with the random parameter
Θ, and Nn(x,Θ) is the number of observations falling into An(x,Θ), the quantity
1Xi∈An(x,Θ) indicates whether the observation Xi belongs to An(x,Θ). The L2-error
of the forest estimate takes then the form

E
[
m∞,n(x)−m(x)

]2 ≤ 2E

[ n∑
i=1

W∞ni (x)(Yi −m(Xi))

]2

+ 2E

[ n∑
i=1

W∞ni (x)(m(Xi)−m(x))

]2

= 2In + 2Jn.

We can identify the term In as the estimation error and Jn as the approximation
error, and then work on each term In and Jn separately.

Approximation error. Regarding Jn, by the Cauchy Schwartz inequality,

Jn ≤ E
[ n∑
i=1

√
W∞ni (x)

√
W∞ni (x)|m(Xi)−m(x)|

]2

≤ E
[ n∑
i=1

W∞ni (x)(m(Xi)−m(x))2

]

≤ E

 n∑
i=1

1Xi∈An(x,Θ)

Nn(x,Θ)
sup
x,z,

|x−z|≤diam(An(x,Θ))

|m(x)−m(z)|2


≤ L2E

[
1

Nn(x,Θ)

n∑
i=1

1Xi∈An(x,Θ) (diam(An(x,Θ)))
2

]

≤ L2E

[
(diam(An(x,Θ)))

2

]
,

where the fourth inequality is due to the L-Lipschitz continuity of m. Let V`(x,Θ)
be the length of the cell containing x along the `-th side. Then,

Jn ≤ L2
d∑
l=1

E

[
Vl(x,Θ)2

]
.
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According to Lemma 1 specified further, we have

E

[
Vl(x,Θ)2

]
≤ C1

(
1− 3

4d

)k
,

with C1 = exp(12/(4d− 3)). Thus, for all k, we have

Jn ≤ dL2C1

(
1− 3

4d

)k
.

Estimation error. Let us now focusing on the term In, we have

In = E

[ n∑
i=1

W∞ni (x)(Yi −m(Xi))

]2

=

n∑
i=1

n∑
i=1

E

[
W∞ni (x)W∞nj (x)(Yi −m(Xi))(Yj −m(Xj))

]

= E

[ n∑
i=1

(W∞ni (x))2(Yi −m(Xi))
2

]
≤ σ2E

[
max

1≤i≤n
W∞ni (x)

]
,

since the variance of εi is bounded above by σ2. Recalling that an is the number of
subsampled observations used to build the tree, we can note that

E

[
max

1≤i≤n
W∞ni (x)

]
= E

[
max

1≤i≤n
EΘ

[
1Xi∈An(x,Θ)

Nn(x,Θ)

]]
≤ 1

an
2k
− 2

E

[
max

1≤i≤n
PΘ

[
Xi ∈ An(x,Θ)

]]
.

Observe that in the subsampling step, there are exactly
(
an−1
n−1

)
choices to pick a fixed

observation Xi. Since x and Xi belong to the same cell only if Xi is selected in the
subsampling step, we see that

PΘ [Xi ∈ An(x,Θ)] ≤
(
an−1
n−1

)(
an
n

) =
an
n
.

So,

In ≤ σ2 1
an
2k
− 2

an
n
≤ 2σ2 2k

n
,

since an/2
k ≥ 4. Consequently, we obtain

E
[
m∞,n(x)−m(x)

]2 ≤ In + Jn ≤ 2σ2 2k

n
+ dL2C1

(
1− 3

4d

)k
.

Optimal parameter choice We now want to prove inequality (4) in Theorem 3.1.
Regarding Theorem 3.1, we want to find the optimal value of tree depth, in order to
obtain the best rate of convergence for the forest estimate.
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Let c1 = 2σ2

n and c2 = dL2C1 and β =
(

1− 3
4d

)
. Then,

E
[
m∞,n(x)−m(x)

]2 ≤ c12k + c2β
k.

Let f : x 7→ c1e
x ln 2 + c2e

x ln(β). Thus,

f ′(x) = c1 ln 2ex ln 2 + c2 ln(β)ex ln(β)

= c1 ln 2ex ln 2

(
1 +

c2 ln(β)

c1 ln 2
ex(ln(β)−ln 2)

)
.

Since β ≤ 1, f ′(x) ≤ 0 for all x ≤ x? and f ′(x) ≥ 0 for all x ≥ x?, where x? satisfies

f ′(x?) = 0

⇐⇒ x? =
1

ln 2− ln(β)
ln

(
− c2 ln(β)

c1 ln 2

)
⇐⇒ x? =

1

ln 2− ln(β)

[
ln

(
1

c1

)
+ ln

(
− c2 ln(β)

ln 2

)]

⇐⇒ x? =
1

ln 2− ln
(

1− 3
4d

)
ln(n) + ln

−dL2C1 ln
(

1− 3
4d

)
2σ2 ln 2


⇐⇒ x? =

1

ln 2− lnβ

[
ln(n) + C2

]
,

where C2 = ln

−dL2C1 ln

(
1− 3

4d

)
2σ2 ln 2

.

Consequently,

E
[
m∞,n(x)−m(x)

]2 ≤ c1 exp(x? ln 2) + c2 exp(x? lnβ)

≤ c1 exp

(
1

ln 2− lnβ

[
ln(n) + C2

]
ln 2

)
+ c2 exp

(
1

ln 2− lnβ

[
ln(n) + C2

]
lnβ

)
≤ c1 exp

(
C2 ln 2

ln 2− lnβ

)
exp

(
ln 2

ln 2− lnβ
ln(n)

)
+ c2 exp

(
C2 lnβ

ln 2− lnβ

)
exp

(
lnβ

ln 2− lnβ
ln(n)

)
≤ c̃1n

ln 2
ln 2−ln β−1 + c̃2n

ln β
ln 2−ln β

≤ C4n

ln

(
1− 3

4d

)
ln 2−ln

(
1− 3

4d

)
, (7)

where C4 = c̃1 + c̃2 with c̃1 = 2σ2 exp

(
C2 ln 2

ln 2−ln β

)
and c̃2 = C2 exp

(
C2 ln β

ln 2−ln β

)
. Note

that this analysis is valid only for an2−kn ≥ 4, that is

an ≥ 4.2
C2

ln 2−ln β .n
ln 2

ln 2−ln β ,
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where, simple calculations show that

2
C3

ln 2−ln β =

(
3L2e12/(4d−3)

8σ2 ln 2

) ln 2
ln 2−ln β

.

Thus, the upper bound (7) is valid if an ≥ C3 n
ln 2

ln 2−ln β , where

C3 = 4

(
3L2e12/(4d−3)

8σ2 ln 2

) ln 2
ln 2−ln β

.

We set up now Lemma 1 about the length of a cell that we used to bound the
approximation error.

Lemma 1. For all ` ∈ {1, . . . , d} and k ∈ N∗, we have

E

[
Vl(x,Θ)2

]
≤ C1

(
1− 3

4d

)k
,

with C1 = exp(12/(4d− 3)).

Proof of Lemma 1. Let us fix x ∈ [0, 1]d and denote by n0, n1, . . . , nk the number of
points in the successive cells containing x (for example, n0 is the number of points in
the root of the tree, that is n0 = an). Note that n0, n1, . . . , nk depends on Dn and
Θ, but to lighten notations, we omit these dependencies. Recalling that V`(x,Θ) is
the length of the `-th side of the cell containing x, this quantity can be written as a
product of independent beta distributions:

V`(x,Θ)
D
=

k∏
j=1

[
B(nj + 1, nj−1 − nj)

]δ`,j(x,Θ)
,

where B(α, β) denotes the beta distribution of parameters α and β, and the indicator
δ`,j(x,Θ) equals to 1 if the j-th split of the cell containing x is performed along the
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`-th dimension (and 0 otherwise). Consequently,

E
[
V`(x,Θ)2

]
=

k∏
j=1

E

[[
B(nj + 1, nj−1 − nj)

]2δ`,j(x,Θ)
]

=

k∏
j=1

E

[
E

[[
B(nj + 1, nj−1 − nj)

]2δ`,j(x,Θ)∣∣δ`,j(x,Θ)

]]

=

k∏
j=1

E

[
1δ`,j(x,Θ)=0 + E

[
B(nj + 1, nj−1 − nj)

]2
1δ`,j(x,Θ)=1

]

=

k∏
j=1

(
d− 1

d
+

1

d
E
[
B(nj + 1, nj−1 − nj)

]2)

=

k∏
j=1

(
d− 1

d
+

1

d

(nj + 1)(nj + 2)

(nj−1 + 1)(nj−1 + 2)

)

≤
k∏
j=1

(
d− 1

d
+

1

4d

(nj−1 + 2)(nj−1 + 4)

(nj−1 + 1)(nj−1 + 2)

)

≤
k∏
j=1

(
1− 1

d
+

1

4d

nj−1 + 4

nj−1 + 1

)
, (8)

where the first inequality stems from the relation nj ≤ nj−1/2 for all j ∈ {1, . . . , k}.
We have the following inequalities.

nj−1 + 4

nj−1 + 1
≤ an + 2j+1

an − 2j−1
=

an + 2j+1

an(1− 2j−1

an
)

≤ an + 2j+1

an

(
1 +

2j−1

an

1

1− 2j−1

an

)

≤
(

1 +
2j+1

an

)2

,

since
2j−1

an
≤ 2k−1

an
≤ 1

2
.

Going back to inequality (8), we find

E

[
Vl(x,Θ)2

]
≤

k∏
j=1

[
1− 1

d
+

1

4d

(
1 +

2j+1

an

)2]

≤
k∏
j=1

[
1− 3

4d
+

3

d

2j−1

an

]

≤
k∏
j=1

[
1− 3

4d
+

3

d

2k

an
2j−k

]

≤
k−1∏
j=0

[
1− 3

4d
+

3

d
2−j−1

]
.
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Moreover, we can notice that

ln

k−1∏
j=0

[
1− 3

4d
+

3

d
2−j−1

] = k ln

(
1− 3

4d

)
+

k−1∑
j=0

ln

(
1 + 6

2−j

4d− 3

)

≤ k ln

(
1− 3

4d

)
+

12

4d− 3
.

This yields to the desired upper bound

E

[
Vl(x,Θ)2

]
≤ C1

(
1− 3

4d

)k
,

with C1 = exp(12/(4d− 3)).

The proofs of Corollary 1 and 2 are straightforward.
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