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Mathematical problem-solving by high-achieving 
students: Interaction of mathematical abilities 
and the role of the mathematical memory
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The present study deals with the interaction of math-
ematical abilities and the role of the mathematical 
memory in the problem-solving process. To examine 
those phenomena, the study investigates the behaviour 
of high-achieving students from secondary school when 
solving new and challenging problems. Although the 
mathematical memory accounts for a small part of 
the problem-solving process, it has a critical role in the 
choice of problem-solving methods. The study shows 
that if the initially selected methods do not lead to the 
desired outcome, the students find it very difficult to 
modify them. The study also shows that students who 
use algebraic problem-solving methods perform better 
than those who use numerical methods.

Keywords: High-achievers, mathematical memory, abilities, 

problem solving.

INTRODUCTION

Despite increasing emphasis on the education of gift-
ed and high-achieving students, we still have limited 
empirical data about their mathematical abilities and 
use of memory functions during mathematical prob-
lem-solving. So far, much of the research on mathe-
matical abilities has been conducted on low-achievers 
(e.g., Swanson & Jerman, 2006). Only a few studies 
are focusing the mathematical abilities of gifted and 
high-achieving students (e.g., Brandl, 2011; Vilkomir 
& O´Donoghue, 2009) or the connection between 
those students’ memory functions and their mathe-
matical performance (Leikin, Paz-Baruch, & Leikin, 
2013; Raghubar, Barnes, & Hecht, 2010). Yet no study 
since Krutetskii (1976) has examined the role of the 
mathematical memory in the context of able students’ 
problem-solving activities.

BACKGROUND

Mathematical abilities
We are not born with abilities that are explicitly 
mathematical, but an active contact with the subject 
may, under favourable circumstances, generate com-
plex mathematical abilities (Krutetskii, 1976). When 
discussing the subject, we should remind ourselves 
that mathematics is not a topic defined by sufficient 
and necessary components and there is no uniform 
terminology for the abilities that we tend to define 
as mathematical (Csíkos & Dobi, 2001). Thus, it is not 
possible to define a structured system of mathemat-
ical thinking in which the units are satisfactory to 
understand the system. A historical review shows 
that Calkins (1894) concluded – based on replies from 
Harvard students – that mathematicians have con-
crete rather than verbal memories, that there are no 
differences in ease in memorising between mathema-
ticians and other students and that, when doing math-
ematics, there is no significant difference between 
men and women. In the early 1900s, mainly because 
of the dominance of psychometric approaches, the 
research community’s efforts to define mathemati-
cal abilities were unsatisfactory. Nevertheless, Binet, 
Piaget and Vygotsky made relevant contributions to 
the subject by replacing psychometric approaches 
with socio-cultural attitudes and thereby showing that 
abilities are nor static or innate, but qualities that 
can be assimilated and developed by the individual 
(Vilkomir & O´Donoghue, 2009).

An essential contribution to the subject was made 
by Krutetskii (1976) who observed around 200 pu-
pils in a longitudinal study (1955–1966). Krutetskii’s 
analysis of the pupils’ problem-solving activities lead 
to a model of mathematical ability as a dynamic and 
complex phenomenon, consisting of: a) the ability to 
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obtain and formalize mathematical information (e.g., 
formalized perception of mathematic material), b) the 
ability to process mathematical information (e.g., log-
ical thought, flexibility in mental processes, striving 
for clarity and simplicity of solutions), c) the ability 
to retain mathematical information or mathematical 
memory (i.e., a generalized memory for mathematical 
relationships) and d) a general synthetic component, 
named a “mathematical cast of mind” (Krutetskii, 1976, 
pp. 350–351).

Although the above model is often used to identify 
mathematical giftedness – and studies (e.g., Brandl, 
2011; Krutetskii, 1976; Öystein, 2011) show that 
high-achievers are not necessarily mathematically 
gifted – Krutetskii indicates that even students per-
forming very well in the learning of the subject, e.g. 
high-achievers, manifest abilities that can be regarded 
as proper mathematical abilities (ibid, pp. 67–70).

Mathematical memory
Memory is thought to be critical to both learning and 
doing mathematics (e.g., Leikin et al., 2013; Raghubar 
et al., 2010). Research that deals with memory func-
tions was conducted for more than 120 years, but 
during the first eight decades the topic was almost 
exclusively examined by quantitative measures 
(Byers & Erlwanger, 1985). However, in the 1940s, the 
research shifted focus toward more qualitative terms. 
Thus, Katona (1940) stated that information related 
to a method and based on understanding is easier to 
remember than arbitrary numbers. Later, Bruner 
(1962) noted that detailed knowledge can be recalled 
from memory with the use of simple interrelated rep-
resentations. Although numbers are fundamental 
tools in mathematics, Krutetskii (1976) underlines 
that recalling numbers or multiplication tables can-
not be equated with mathematical memory; highly 
able students memorise contextual information of a 
problem only during the problem-solving process and 
forget it mostly afterwards. Yet, they can still several 
months later recall the general method which solved 
the problem. In contrast, low-achievers often remem-
ber the context and exact figures related to a problem, 
but rarely the general problem-solving method. Thus, 
mathematical memory is a generalized memory for 
mathematical relationships, schemes of arguments 
and methods of problem-solving (ibid, p. 300).

Studies (e.g., Squire, 2004) show significant distinc-
tions between different types of memory systems. 

Relating mathematical problem-solving to the cog-
nitive model – by using a simplification – one can 
say that information is processed (e.g. the problem 
is solved) in the working memory and is stored (e.g. 
the problem-solving method) in the long term memory. 
Long term memory has two subcategories: explicit and 
implicit memory, depending on the type of informa-
tion stored in the respective system. The implicit mem-
ory stores information about procedures, algorithms 
and patterns of movement that can be activated when 
certain events occur; in mathematical context, the 
procedural memory is a relevant part of this system 
(Olson et al., 2009; Squire, 2004). The explicit memory 
stores information about experiences and facts which 
can be consciously recalled and explained; thus, it is 
associated with the ability to create mental schemas 
for problem-solving (Davis, Hill, & Smith, 2000). Thus, 
we can assume that mathematical memory, as defined 
by Krutetskii, belongs to the explicit (hence not to the 
implicit) memory system.

Krutetskii (1976, p. 339) and Davis and colleagues 
(2000) suggest that proper manifestations of math-
ematical memory are not observable in the prima-
ry grades, because at that age able pupils usually 
remember relationships and concrete data equally 
well. Krutetskii indicates that mathematical memory 
is formed at later stages, most probably on the basis of 
the initial ability to generalize mathematical material 
(ibid, p. 341).

Accordingly, the present study (Szabo, 2013) examined 
the dynamics between mathematical abilities, as de-
fined by Krutetskii, from the following perspectives:

1)	 The evidence and the interaction of mathematical 
abilities when high-achieving students are solv-
ing new and challenging mathematical problems.

2)	 The role of the mathematical memory in the pro-
cess of solving new and challenging mathemat-
ical problems.

METHOD

Participants
According to Krutetskii: a) the mathematical memory 
cannot be observed properly in young pupils or in 
low-achievers and b) mathematical abilities are man-
ifested by high-achievers. Consequently, the present 
study focused remarkably high-achieving, 16–17 
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years old students from Swedish secondary school. 
The participants attended an advanced mathematics 
programme and achieved the highest grade in math-
ematics. The participation was optional; after four 
months of classroom observations and consultations 
with their mathematics teacher, three boys and three 
girls were selected to attend the study.

Tasks
The analysis of a given problem, regardless of the 
mathematical field it belongs to, indicates the struc-
ture of the mathematical thinking needed to solve the 
problem (Halmos, 1980). Several studies confirm that 
the most effective way to discern mathematical abil-
ities is to analyse the behaviour of individuals in the 
context of problem-solving activities (e.g., Gyarmathy, 
2002; Krutetskii, 1976). Other results (e.g., Krutetskii, 
1976; Öystein, 2011) indicate that individual experi-
ence influences students’ ways of solving problems. 
The aim of the present study was to investigate the 
participants’ mathematical abilities, not their knowl-
edge of the subject; thus, to avoid as far as possible the 
influence of prior experiences, new problems were 
proposed that were not of a standard nature. After 
examining the participants’ textbooks and consult-
ing their math teacher, the following problems were 
selected:

Problem 1: In a semicircle we draw two additional 
semicircles, according to the figure. Is the length of the 
large semicircle longer, shorter or equal to the sum 
of the lengths of the two smaller semicircles? Justify 
your answer.

Problem 2: Mary and Peter want to buy a CD. At the 
store, they realise that Mary has 24 SEK less and Peter 
has 2 SEK less than the price of the CD. Even when 
they put their money together, they couldn’t afford to 
buy the CD. What is the price of the CD and how much 
money has Mary and Peter respectively?

Observations and materials
Classroom interaction affects student’s thought pro-
cess and that interaction is not limited to verbal com-

munication; even gestures or other minor events are 
affecting the process (Norris, 2002). Krutetskii also 
underlines that it is difficult to map individual mathe-
matical abilities if pupils are observed in a classroom 
situation. To avoid these confounding factors, the 
students were observed individually and, in order 
to avoid stress, they had unlimited time for complet-
ing the tasks. They were asked to write down every 
step in the process and to “think out loud” whenever 
it was possible. If a student neither wrote, nor drew 
or spoke for a while, some of the following questions 
were posed: What is bothering you? Why do you do 
that? What do you want to do and why? What are you 
thinking about? All observations were carried out 
during a single day and recorded by using a technol-
ogy which enables to digitalize handwritten notes 
and related verbal utterances (www.livescribe.com).

Pupils are not used to communicate their thoughts 
while solving problems (Krutetskii, 1976). To avoid 
the risk that significant parts of their cognitive actions 
would not be documented during the process, every 
problem-solving activity was followed by a contex-
tual interview. The recordings of the interviews and 
problem-solving activities were transcribed verbatim. 
Although the unlimited time for solving the problems, 
no participant needed more than 14 minutes to solve 
a single problem and the average duration of the suc-
ceeding contextual interviews was four minutes.

Data analysis
The general synthetic component in Krutetskii’s 
model, i.e., the “mathematical cast of mind”, is diffi-
cult to observe during occasional problem-solving 
and is typical for mathematically gifted students 
(ibid, pp. 350–351). The participants were certainly 
high-achievers, but not tested for mathematical gift-
edness and besides that, only two tasks were proposed 
to them during the present study. Thus, the general 
synthetic component was not focused in the study. 
Conversely, the ability to generalize is frequently used 
when pupils establish mathematical memories (ibid, p. 
341); thus, the study examined the presence of the abil-
ity to generalize mathematical information during 
the students’ activities. A rigorous a-priori analysis 
of the proposed tasks led to an identification-model 
for the present study, which focused the following 
abilities from Krutetskii’s framework: obtaining and 
formalizing mathematical information (O), processing 
mathematical information (P), generalizing mathemat-

Figure 1
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ical relations and operations (G) and mathematical 
memory (M).

The digital recording of the problem-solving activities 
resulted in an exact linear reproduction of the pupils’ 
written solutions, drawings and verbal utterances. 
This was very useful when performing qualitative 
content analysis of the empirical material, inspired 
by Graneheim and Lundman (2004) and van Leeuwen 
(2005). The students’ solutions were analysed by iden-
tifying, coding and categorising the basic patterns in 
the empirical content. At first, the method highlighted 
those abilities that were directly expressed in the em-
pirical material, i.e. the manifest content. After that, 
the latent content was analysed, by combining data 
from observations and contextual interviews. I exem-
plify this with data from Linda, who – when solving 
Problem 1 – looked at the task, drew some semicircles 
and whispered for herself:

Linda: 	 Thus, eh... Oh, and here we are after all 
just using what radius they have and 
such. One would...

After this device, which occurred after 30 seconds 
from start, she solved the problem by not saying that 
much and it was not possible to decide if mathematical 
memory was present at the time or if she only used 
her ability to obtain and formalize mathematical in-
formation. Later, when analysing the latent content, 
the following sequence from the contextual interview 
referred to the above mentioned episode:

Linda: 	 And then you express it simply as that, 
well, expressing their different diame-
ters as something of each other.

Interviewer:	Yes.
Linda: 	 It is similar to another task that I like 

very much...
...
Linda: 	 Like there, when solving that, the first 

thing to do… it is making formulas... 
How different triangles and squares... 
how the inside of it looks.

Interviewer:	Yes... hum.
Linda:	 Just like there, if you express different 

sides through... and take one side minus 
the other, just like in that problem...

The statement “It is similar to another task that I like 
very much” and the following explanation, relating 

the actual problem to an apparently different task – 
with a context of triangles and squares – show the 
evidence of an (explicit) memory for a generalization, 
i.e. mathematical memory in the actual device. The 
combined analysis resulted in a matrix there every 
device which lasted at least one second during the 
observed activities, and the time period for its oc-
currence, was related to the mathematical abilities 
focused in the present study. The matrix displayed 
both the interaction between the focused abilities and 
the occurrence of the abilities, measured in seconds, 
during every particular problem-solving activity. The 
matrix also indicated that some devices were actually 
related to two interconnected abilities.

RESULTS

The interaction of the mathematical abilities
Every student confirmed that the problems were new 
and challenging, which was a key issue in the design 
of the study. The analysis displays that the students’ 
problem-solving activities contain three main phases. 
All activities start with an initial phase which enclos-
es both the ability to obtain and formalize the mathe-
matical information and mathematical memory; these 
abilities are intimately connected and it is difficult to 
differentiate them. Directly after the initial phase, fol-
lows a phase where the ability to process mathematical 
information is prominent. Nevertheless, every activi-
ty ends with a different phase of processing mathemati-
cal information, where the students are checking their 
results. Beyond these three main phases, the observed 
mathematical abilities interact in irregular and un-
structured configurations.

The analysis also shows that if the chosen method 
does not lead to a direct solution of the problem, stu-
dents become stressful and discontinue processing 
the mathematical information; they return to the in-
itial phase, which is once again followed by a phase 
of information processing. Some participants went 
through this shifting of phases three times. The stress 
was most evident at Problem 2, where three of those 
four students who used similar methods made the 
same error when solving the inequality 2x – 26 < x. 
All three activities include the incorrect sequence 

“2x – 26 < x gives x – 13 < x”, before returning to the 
initial phase. All participants were familiar with 
inequalities; thus, one may naturally wonder why 
high-achievers make seemingly simple errors. The 
interviews reveal that the stress occurred when the 
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formalization led to inequalities instead of the ex-
pected equations: 

Earl: 	 That´s I was a little surprised when it 
was… on the inequality you solved it. 

Erin: 	 It is always difficult to start thinking 
outside the box... It feels like your mind 
goes blank. 

Linda: 	 Because I get so… When I start with 
equations ... then I really want to solve 
it with equations. 

Sebastian: 	 This kind of tasks usually requires 
an equation.

Thus, it seems that the stress was due to the selected 
method, i.e. equation-solving, lacked those proce-
dures that are necessary when solving inequalities.

The problem-solving methods 
used by the students
The problem-solving methods could be divided into 
two categories, as identified during the a-priori 
analysis of the proposed tasks: algebraic respective-
ly numerical methods. Consequently, it was possible 
to distinguish 7 algebraic and 5 numerical methods 
among the 12 processes. All of the algebraic methods – 
despite different approaches – led to correct solutions. 
In contrast, when applying numerical methods, the 
problems were not solved in a proper way.

The general structure of the 
students’ mathematical abilities
The analysis emerged in a matrix there every device 
in the problem-solving activities was related to at 
least one mathematical ability. On the other hand, 
the analysis revealed that at some devices there were 
two interrelated abilities present at the time – thus 
the methods of observation and analysis used in this 
study were not sufficient to differentiate those inter-
related abilities. Accordingly, the ability to process 
mathematical information (P) is present at 52 % of the 
total time of the students’ activities (see also Table 1). 
Obtaining and formalizing mathematical information 
(O) – solitary or in combination with other abilities – 

is present at 45 % and mathematical memory (M) at 17 
% of the total time (Table 1).

According to the a-priori analysis of the tasks, the 
ability to generalize mathematical information (G) 
could be detected when numerical solutions were de-
veloped into general solutions. Consequently, when 
numerical solutions were presented by the students, 
they were asked if they were able to generalize the 
obtained results. The analysis shows that none of the 
participants has been able to generalize the obtained 
numerical solutions; thus, the ability to generalize 
mathematical information could not be observed in 
this study.

The role of the mathematical memory 
in the problem-solving process
The analysis demonstrates that the mathematical 
memory is present predominantly at the initial phase 
of the process, at a relatively small proportion. In iso-
lated form – at 5 % of the process – the ability is present 
in the manifest content and it is mainly used for recall-
ing mathematical relationships and problem-solving 
methods. In the latent content, the ability is present 
during 12 % of the process, mainly in combination with 
the ability to obtain and formalize mathematical in-
formation (O with M) (Table 1).

Despite of its minor proportion, the mathematical 
memory is essential to students’ achievement in the 
problem-solving process, because: a) the students se-
lected their methods in the initial phase of the process 
and b) the students found it very difficult to modify 
the selected methods. Although they started over the 
process by returning to the initial phase, none of them 
abandoned the initially selected method.

DISCUSSION

One of the study’s main objectives was to map the in-
teraction of high-achieving students’ mathematical 
abilities during problem-solving. Three main phases 
of the problem-solving activities were identified: the 
initial phase, the subsequent phase of processing the 

O O with P O with M P P with M G M

33 % 2 % 10 % 48 % 2 % 0 % 5 %

Note: O = the ability to obtain and formalize mathematical information; P = the ability to process information; G = 
the ability to generalize mathematical information; M = mathematical memory

Table 1: Average time for mathematical abilities, according to the total time of the problem-solving process
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information and the ending phase, where results are 
checked by once again processing the information. 
Despite the limitations of the study, the chronological 
order of the mentioned phases emphasize to some 
extent Polya’s (1957) model for problem-solving, which 
consist of four phases: a) understanding the problem, 
b) devising a plan in order to solve the problem, c) car-
rying out the plan and d) looking back. Thus, the study 
indicates that high-achievers solve new and challeng-
ing mathematical problems according to the ground 
stones in Polya’s model.

According to the results, the role of the mathematical 
memory – despite its relatively small presence in the 
process – is critical, since the participants selected 
their methods at the start of the process and did not 
change them later, e.g. when the formalization led to 
inequalities instead of the expected equations, the par-
ticipants returned to the initial phase but did not aban-
don the selected method. A selection of an improper 
method caused stress, time delay and errors during 
problem-solving. Thus, it seems that the participants 
experience a close and rigid interrelation between 
problem-solving methods and included procedures, 
i.e. they are not acting flexibly when solving new and 
challenging problems. By confirming the findings 
of other studies (e.g., Brandl, 2011) – where typical 
high-achievers are characterised by being dutiful, 
nonflexible and conformist – the results indicate that 
these participants were high-achievers but probably 
not mathematically gifted. In contrast, mathematical-
ly gifted students are described as flexible, high-lev-
el problem-solvers and out-of-the-box-thinkers (e.g., 
Brandl, 2011; Krutetskii, 1976; Leikin, 2014). Hence, 
the study confirms some qualitative differences in 
problem-solving between high-achievers who are not 
essentially mathematically gifted and mathematically 
gifted students.

However, the inflexibility of the participants can also 
be explained by two main functions of the cerebral 
cortex, where working memory operates. One func-
tion is to assemble all new information in relation to 
previous experiences (Olson et al., 2009). Thus, we 
can assume that at the initial phase, when obtaining 
and formalizing the information, the students are in-
fluenced by previous experiences (e.g. mathematical 
memory) and act as they are used to, e.g. by starting 
problem-solving with equations. Another main func-
tion of the cerebral cortex is to automate all knowl-
edge (Olson et al., 2009). Yet, automated processes are 

rigid and extremely hard to modify during an on-go-
ing activity. Therefore, it seems that equation-solving 
is an automated process for typical high-achievers 
and that the interpretation of new information in the 
light of past experiences affects their possibility to 
think flexibly in unusual situations.

Finally, it has to be mentioned that the present study 
confirms Krutetskii’s (1976) observation that during 
the initial phase it is extremely difficult to distinguish 
the ability to obtain mathematical information from 
the mathematical memory. Since information-units 
stored in the long term memory systems are retrieved 
at extremely high speed to the working memory (Olson 
et al., 2009), the methods used in this study were not 
sufficient to differentiate the information-units relat-
ed to respective abilities. For a better understanding 
of the interaction of the mathematical abilities there 
is a need of further studies. One possible access is to 
design studies where the structure of the mathemati-
cal ability is examined with approaches from several 
research fields, e.g. by combining qualitative research 
methods with practices from cognitive neuroscience. 
In that way, we would possibly be able to answer the 
questions that were not possible to be answered in 
the present study.
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