I. Hanski and M. E. Gilpin, Metapopulation Biology, 1997.
DOI : 10.1016/B978-012323448-3/50003-9

R. Levins, Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control, Bulletin of the Entomological Society of America, vol.15, issue.3, pp.237-240, 1969.
DOI : 10.1093/besa/15.3.237

J. Arino and P. Van-den-driessche, A multi-city epidemic model, Mathematical Population Studies, vol.70, issue.3, pp.175-193, 2003.
DOI : 10.1016/S0025-5564(02)00108-6

V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations, Journal of Theoretical Biology, vol.251, issue.3, pp.450-467, 2008.
DOI : 10.1016/j.jtbi.2007.11.028

S. Meloni, N. Perra, A. Arenas, S. Gomez, Y. Moreno et al., Modeling human mobility responses to the wide-scale spreading of infectious diseases, Sci. Rep, vol.1, pp.1-7, 2011.

R. Durrett and S. Levin, The Importance of Being Discrete (and Spatial), Theoretical Population Biology, vol.46, issue.3, pp.363-394, 1994.
DOI : 10.1006/tpbi.1994.1032

L. Fahse, C. Wissel, and V. Grimm, Reconciling classical and IB Approaches in theoretical population ecology: A protocol for extracting population parameters from IBM, Am. Nat, vol.152, pp.838-852, 1998.

M. Ajelli, B. Goncalves, D. Balcan, V. Colizza, H. Hu et al., Comparing wide-scale computational modeling Approaches to epidemic: Agent-based versus structured MetaPopulation models, BMC Infect. Dis, vol.10, pp.350-352, 2010.

N. D. Nguyen, Coupling Equation-based and Individual-based Models in the Study of Complex Systems?A Case Study in Theoretical Population Ecology, 2010.

W. O. Kermack and A. G. Mckendrick, Contributions to the mathematical theory of epidemics: V. Analysis of experimental epidemics of mouse-typhoid; a bacterial disease conferring incomplete immunity, Journal of Hygiene, vol.37, issue.03, pp.271-288, 1939.
DOI : 10.1098/rspa.1932.0171

A. Banos, N. Corson, B. Gaudou, V. Laperrière, and S. Rey-coyrehourcq, Coupling Micro and Macro Dynamics Models on Networks: Application to Disease Spread, LNCS Lecture Notes in Computer Science, 2015.
DOI : 10.1007/978-3-319-31447-1_2

URL : https://hal.archives-ouvertes.fr/hal-01301222

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics, vol.22, issue.4, pp.403-434, 1976.
DOI : 10.1016/0021-9991(76)90041-3

D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, The Journal of Physical Chemistry, vol.81, issue.25, pp.2340-2361, 1977.
DOI : 10.1021/j100540a008

M. J. Keeling, The effects of local spatial structure on epidemiological invasions, Proceedings of the Royal Society B: Biological Sciences, vol.266, issue.1421, pp.859-867, 1999.
DOI : 10.1098/rspb.1999.0716

R. Pastor-satorras, C. Castellano, P. Van-mieghem, and A. Vespignani, Epidemic processes in complex networks, Reviews of Modern Physics, vol.87, issue.3, pp.120-131
DOI : 10.1103/RevModPhys.87.925

D. J. Watts and S. H. Strogatz, Collective dynamics of " small-world " networks, Nature, vol.393, issue.6684, pp.440-442, 1998.
DOI : 10.1038/30918

Y. Wang, J. Cao, A. Alofi, A. Al-mazrooei, and A. Elaiw, Revisiting node-based SIR models in complex networks with degree correlations, Physica A: Statistical Mechanics and its Applications, vol.437, pp.75-88
DOI : 10.1016/j.physa.2015.05.103