P. P. Ewald, T. Berechnung-optischer-und-elektrostatischer-gitterpotentiale-darden, D. York, and L. Pedersen, Particle mesh Ewald: An N· log(N) method for Ewald sums in large systems New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations, 253?287. (2) 10089?10092. (3) Darden, R55?R60. (4) Smith, W. Point multipoles in the Ewald summation, p.98, 1921.

C. Newslett-nam, K. Gao, J. York, D. M. Ren, P. Ponder et al., An Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/ MM Calculations Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation, 2?13. (6) 5933?5947. (7) Walker, R. C.; Crowley, M. F.; Case, D. A. The implementation of a fast and accurate QM/MM potential method in Amber. J. Comput, pp.18-30, 1998.

. Phys, P. Chem-ren, C. Wu, J. W. Ponder, Y. Shi et al., Polarizable Atomic Multipole- Based Molecular Mechanics for Organic Molecules Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins, 2549?2564. (9) 3143?3161. (10) 4046?4063. (11) Stone, A. J. The Theory of Intermolecular Forces, 1996.

C. A. Hunter, J. K. Sanders, E. G. Hohenstein, J. N. Duan, and C. Sherrill, Dominated by Dispersion but Predicted by Electrostatic and Dispersion/Polarizability Substituent Constants The nature of .pi.-.pi. interactions, 3854?3862. (13) 5525?5534. (14), 1990.

. Am, . Chem, B. Soc-engels, B. Jeziorski, R. Moszynski et al., Accurate Intermolecular Potentials with Physically Grounded Electrostatics Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes, 1791?1803. (16) 1887?1930. (17) Mu, 1994.

K. N. Dalby and P. Ren, Modeling Organochlorine Compounds and the ?-Hole Effect Using a Polarizable Multipole Force Field Charge penetration in dielectric models of solvation, 6456?6465. (18) Chipman, D. M. 10194?10206. (19) Chipman, D. M. Reaction field treatment of charge penetration, 1997.

N. Rega, G. Scalmani, V. Barone, M. A. Freitag, M. S. Gordon et al., Polarizable dielectric model of solvation with inclusion of charge penetration effects Evaluation of charge penetration between distributed multipolar expansions Giessner-Prettre, C. Improved formulas for the calculation of the electrostatic contribution to the intermolecular interaction energy from multipolar expansion of the electronic distribution, 5691?5701. (21) 7300?7306. (22), pp.10353-10359, 2000.

N. Gresh, J. P. Piquemal, M. Krauss, L. V. Slipchenko, M. S. Gordon et al., Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contributions Comparisons with parallel ab initio computations Electrostatic energy in the effective fragment potential method: Theory and application to benzene dimer General methodology to optimize damping functions to account for charge penetration effects in electrostatic calculations using multicentered multipolar expansions A second generation distributed point polarizable water model Electrostatic Damping Functions and the Penetration Energy (28) Spackman, M. A. The use of the promolecular charge density to approximate the penetration contribution to intermolecular electrostatic energies, Journal of Chemical Theory and Computation Article DOI: 10.1021/acs.jctc.5b00267 (23) 1113?1130. (24) 276?291. (25) No. 014309. (27) 158?162. (29) Cisneros, G. A. Application of Gaussian Electrostatic Model (GEM) Distributed Multipoles in the AMOEBA Force Field 5072?5080. (30) Wang, B.; Truhlar, D. G. Screened Electrostatic Interactions in Molecular Mechanics, pp.268-280, 2005.

D. Elking, L. Perera, J. P. Piquemal, B. Wang, D. G. Truhlar et al., Including Charge Penetration Effects in Molecular Modeling Partial Atomic Charges and Screened Charge Models of the Electrostatic Potential Improved Hydrogen Bonding at the NDDO-Type Semiempirical Quantum Mechanical/Molecular Mechanical Interface Density fitting of intramonomer correlation effects in symmetry-adapted perturbation theory Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies, 3330? 3342. (33) 2206?2211. (35)37) Rezac 2427?2438. (38), p.7, 2008.

G. Evangelista, F. A. Fermann, J. T. Mintz, B. J. Burns, L. A. Wilke et al., Psi4: An open-source ab initio electronic structure program Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, 556?565. (40) 1007?1023. (41) 6796?6806. (42) Halkier, p.96, 1989.

J. Olsen and A. K. Wilson, Basis-set convergence in correlated calculations on Ne, N2, and H2O 243?252. (43) Rezac, J.; Hobza, P. Extrapolation and Scaling of the DFT-SAPT Interaction Energies toward the Basis Set Limit Automation of AMOEBA polarizable force field parameterization for small molecules, 685?689. (44) Wu, 1998.

. Chem and . Acc, 1?11. (45) Stone, A, J, vol.131, issue.3, 2012.

. Anisotropic, polarizable molecular mechanics studies of inter-and intramoecular interactions and ligand-macromolecule complexes. A bottom-up strategy, J. Chem. Theory Comput, vol.3, issue.6, 2007.