Gender differences in attitudes toward statistics: Is there a case for a confidence gap?
Francesca Chiesi, Caterina Primi

To cite this version:
Francesca Chiesi, Caterina Primi. Gender differences in attitudes toward statistics: Is there a case for a confidence gap?. Konrad Krainer; Nada Vondrová. CERME 9 - Ninth Congress of the European Society for Research in Mathematics Education, Feb 2015, Prague, Czech Republic. pp.622-628, Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education. <hal-01287050>

HAL Id: hal-01287050
https://hal.archives-ouvertes.fr/hal-01287050
Submitted on 11 Mar 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Gender differences in attitudes toward statistics: Is there a case for a confidence gap?

Francesca Chiesi and Caterina Primi

University of Florence, Florence, Italy, francesca.chiesi@unifi.it

Female students tend to underestimate their abilities and to have more negative attitudes toward quantitative disciplines when compared to male students. In teaching statistics this concern has to be taken into account since it may create an obstacle for learning. The aim of the present study was twofold: to test if women had less confidence and more negative attitude than men regardless their actual abilities, and to investigate if achievement in statistics was affected by these factors controlling for gender. Results showed that women did not differ in their abilities but showed less confidence and more negative attitudes when compared to men. Moreover, confidence and attitude played a role on achievement in women but not in men. The importance of enhancing attitudes toward statistics in female students was discussed.

Keywords: Statistics education, attitudes toward statistics, gender differences.

INTRODUCTION

Since statistical literacy is a key ability expected of citizens in information-laden societies, and is deemed a necessary component of adults’ numeracy and literacy (Gal, 2002), it is crucial to develop students’ statistical learning. To accomplish this goal, i.e., to provide students with tools for understanding data-related arguments, building intuition about data, and making reasoned judgments and decisions in their professional and private lives, statistics has been included into a wide range of university programs. Thus, in many countries students progressing towards a degree other than statistics have to pass at least a compulsory statistics exam, and concerns related to teaching and learning statistics are internationally shared (for a review see, e.g., Zieffler et al., 2008).

In teaching statistics in postsecondary education gender might be a relevant factor since, although all students experience stress and difficulties in learning statistics, female students are more likely to feel uneasy in dealing with this discipline. Indeed, they tend to underestimate their abilities and to have more negative attitudes toward quantitative disciplines when compared to male students. For instance, referring to mathematics, it has been shown that women’ self-efficacy is consistently and significantly lower than those of men (e.g., Pajares & Miller, 1994; Stevens, Wang, Olivarez, & Hamman, 2007) regardless their actual ability (Quest, Hyde, & Linn, 2010). This phenomenon, called the confidence gap (Sadker & Sadker, 1994), emerges during the high school years and impacts on the subsequent scholastic/academic choices, i.e. female students tend to avoid scientific secondary and postsecondary degrees and prefer non-mathematical ones (e.g., Halpern et al., 2007).

Nonetheless, female students enrolled in non-mathematical degrees such as Psychology, Education, and Health Sciences encounter statistics courses in their programs. Thus, it is likely that their confidence gap might affect their approach to a discipline like statistics. Indeed, it has been widely demonstrated that, along with cognitive components (e.g., mathematical knowledge and general scholastic background), non-cognitive factors play a determinant role in learning statistics (Chiesi & Primi, 2010; Harlow, Burkholder, & Morrow, 2002; Nasser, 2004; Schutz, Drogosz, White, & Distefano, 1998; Tempelaar, Van Der Loeff, & Gijselaers, 2007; Tremblay, Gardner, & Heipel, 2000; Wisenbaker, Scott, & Nasser, 2000). Among the non-cognitive factors, large attention has been paid to the attitudes toward statistics that include a self-confidence dimension (e.g., the trust in one’s own knowledge and skills when applied to statistics) along with measures of feelings concerning statistics, and beliefs about the usefulness and the difficulty of statistics.
Starting from these premises, the present study aimed to investigate the relationship between attitudes toward statistics and achievement in male and female psychology students attending introductory statistics courses. In detail, the aim of the present study was twofold: to test if females showed more negative attitudes toward statistics (and, specifically, less self-confidence) than males, and to investigate if attitudes affected their achievement. These relationships were investigated controlling for the students’ actual ability, i.e., mathematical basics deemed necessary for introductory statistics courses.

As refers to the first aim, literature on gender differences in attitudes toward statistics reports contradictory results. Some authors reported that men expressed more positive attitudes toward statistics than women (e.g., Auzmendi, 1991; Tempelaar & Nijhuis, 2007). Others found no gender differences (e.g., Estrada, Batanero, Fortuny, & Díaz, 2005; Judi, Ashaari, Mohamed, & Wook, 2011; Martins, Nascimento, & Estrada, 2011; Schau, Stevens, Dauphinee, & Del Vecchio, 1995; Wisenbaker et al., 2000). Some others have reported more positive attitudes for women (e.g., Mahmud & Zainol, 2008; Rhoads & Hubele, 2000). Assuming that these differences might be partially related to the sample characteristics (engineering students, economic students, psychology students, pre-service teachers), and referring to the above mentioned literature on the confidence gap, we hypothesized that psychology female students had more negative attitude toward statistics than their male counterpart, and, specifically, they show less confidence in their knowledge and skills when applied to statistics.

Concerning the second aim, we investigated the relationships among mathematical competence, attitudes and achievement in men and women. Referring to literature on cognitive and non cognitive factors influencing statistics achievement, we hypothesized that mathematical knowledge has an effect on achievement (e.g., Chiesi & Primi, 2010; Harlow et al., 2002; Schutz et al., 1998; Tremblay et al., 2000; Wisenbaker et al., 2000), and, referring to the literature on female students' attitudes toward the quantitative disciplines (e.g., Hyde et al., 1990; McGraw et al., 2006; Pajares & Miller, 1994; Stevens et al., 2007), we hypothesised that attitudes, and especially self-perceived competence, might impact on women’ performance differently than in men.

METHOD

Participants

Participants were 179 psychology students enrolled in an introductory statistics course at the University of Florence in Italy. The course was compulsory for first year students that represent the majority of the sample (91.3%). The course was scheduled to take place over 10 weeks, at 6 hours per week (for a total amount of 60 hours). It covered the usual introductory topics of descriptive and inferential statistics, and their application in psychological research. During each class some theoretical issues were introduced followed by examples and exercises. Students were requested to solve exercises by paper-and-pencil procedure (no computer package was used), and then solutions were presented and discussed.
Participants’ age ranged from 19 to 54 with a mean age of 22.0 years (SD = 5.26). Female students were 113 (mean age = 21.9, SD=4.77) and male students were 68 (mean age = 22.7, SD=6.24). All students participated on a voluntary basis after they were given information about the general aim of the investigation (i.e., collecting information to improve students’ statistics achievement).

Measures and procedure

In a previous study (Chiesi & Primi, 2010), we provided evidence that some mathematical basics are needed for introductory courses and to measure them we developed the *Prerequisiti di Matematica per la Psicometria* (PMP) scale (Galli, Chiesi, & Primi, 2011). The contents were defined on the basis of the basic mathematics abilities requested to solve descriptive and inferential statistics problems. The PMP is composed of 30 multiple choice (one correct out of four alternatives) questions including fractions, set theory (inclusion-exclusion, and intersection concepts), first order equations, relations (between numbers that range from 0 to 1 and numbers expressed in absolute values), and probability (base-rates, independence notion, disjunction and conjunction rules). Fractions are employed both in descriptive and inferential statistics tasks (e.g., to compute the standard deviation, as well as the t or z values). Equations are required, for instance, in the standardization procedure and in regression analysis. Establishing relations between numbers is necessary to compare the computed and critical value in the hypothesis testing. Set theory principles help to understand probability rules, and basics of probability are the prerequisite of the hypothesis testing. A single composite, based on the sum of correct answers, was calculated (range 0–30).

Attitude toward statistics was measured administering the 28-item version of the *Survey of Attitudes toward Statistics* (SATS) (Schau et al., 1995; Italian version: Chiesi & Primi, 2009). We chose SATS since it was proved to be invariant respect to gender (Hilton, Schau, & Olsen, 2004), i.e., equally suitable for male and female respondents, and because it assesses four attitudes dimensions including a self-confidence dimension. In detail, *Cognitive Competence* subscale (6 items) measures students’ attitudes about their intellectual knowledge and skills when applied to statistics (e.g. “I can learn statistics”); *Affect* subscale (6 items) measures positive and negative feelings concerning statistics (e.g. “I feel insecure when I have to do statistics problems”); *Value* subscale (9 items) measures attitudes about the usefulness, relevance, and worth of statistics in personal and professional life (e.g. “Statistics is worthless”); *Difficulty* subscale (7 items) measures students’ attitudes about the difficulty of statistics as a subject (e.g. “Statistics is a complicated subject”). The scale contains Likert-type items using a 7-point scale ranging from strongly disagree to strongly agree. Responses to negatively scored items were reversed, and then scores were obtained for each subscale, with higher ratings representing more positive attitudes. In the present sample, Cronbach’s alphas for the four subscales were: *Cognitive Competence* = .76, *Affect* = .80, *Value* = .74 and *Difficulty* = .65.

Students were administered the SATS and the PMP in this order during the first day of class. The questionnaires were introduced briefly to the students and instructions for completion were given. Answers were collected in paper-and-pencil format and the time needed to complete them ranged from 25 to 40 minutes.

To measure achievement, we employed a midcourse test developed to monitor learning during the course and administered toward the end of the fifth week of the course. The test was composed as follow. Students were given a data matrix (3–4 variables, 10–12 cases) and referring to it they had to solve two problems (e.g., report frequency and percentage distributions, construct a two-way table, draw graphs, compute central tendency, spread and association measures) by paper-and-pencil procedure without the support of a statistics computer package. Additionally, they had to answer two open-ended questions (e.g., to define the measures of central tendency, to interpret the meaning of z values or percentiles). All the items pertained to contents covered in class. The test was timed (1 hour) and books and notes were not allowed to be used. For each problem the score ranged from 0 to 3: 0 = totally incorrect or not solved; 1 = partially solved; 2 = almost solved; 3 = completely solved. For each question the score ranged from 0 to 2: 0 = totally incorrect or no answer; 1 = partially answered; 2 = correctly answered. Two assistant teachers, preliminary trained, scored the tasks. The scores were aggregated in a single measure (range 0–10).
RESULTS

Gender difference in mathematical knowledge, attitudes, and achievement. All descriptives are reported in Table 1. No gender differences were found in mathematical knowledge ($t(177) = 1.10, p = .271$) and in the Value scores ($t(158) = -0.45, p = .67$). In contrast, differences were found in Cognitive Competence ($t(158) = 2.05, p < .05, d = .31$), Affect ($t(158) = 3.68, p < .001, d = .55$), and Difficulty scores ($t(158) = 2.13, p < .05, d = .32$) indicating that men were more confident about their own capabilities, had more positive feelings toward the discipline, and deemed the discipline less difficult than women. Concerning achievement, differences between male and female students were not statically significant ($t(155) = 1.38, p = .17$)

Gender difference in the relationships among mathematical knowledge, attitudes, and achievement. We investigated if mathematical knowledge and attitudes were related to achievement looking at the Pearson product-moment correlations separately in male and female students (Table 2). Males’ achievement was related to mathematical knowledge whereas it was not related to attitudes toward statistics with the only exception of a small correlation with the Cognitive Competence dimension. Females’ achievement was related to mathematical knowledge and to attitudes toward statistics with the exception of the Value dimension.

Since in both gender groups mathematical knowledge was related to attitudes and achievement, the correlations between them might be biased. Therefore, partial correlations were computed controlling for mathematical knowledge. For the male students the correlation with the Cognitive Competence score was not significant ($r = .04, p = .83$) once the effect of mathematical knowledge was controlled. Instead, for the female students the correlations between achievement and Affect ($r = .24, p < .05$) was still significant, as well as the correlations between achievement and Cognitive Competence ($r = .37, p < .01$).

Mathematical knowledge, Affect, and Cognitive Competence as predictors of achievement in female students. To establish the relative impact of mathematical knowledge, Cognitive Competence, and Affect on achievement in women, regression hierarchical analyses were run (Table 3). In the first step, the mathematical knowledge, and, in the second step Cognitive Competence and Affect were added as predictors. The

<table>
<thead>
<tr>
<th>Males</th>
<th>SD</th>
<th>Females</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMP</td>
<td>23.71</td>
<td>4.34</td>
<td>22.90</td>
</tr>
<tr>
<td>SATS-Cognitive Competence</td>
<td>31.59</td>
<td>6.67</td>
<td>29.70</td>
</tr>
<tr>
<td>SATS-Affect</td>
<td>26.00</td>
<td>6.93</td>
<td>22.27</td>
</tr>
<tr>
<td>SATS-Value</td>
<td>46.00</td>
<td>8.20</td>
<td>46.05</td>
</tr>
<tr>
<td>SATS-Difficulty</td>
<td>25.91</td>
<td>5.62</td>
<td>24.30</td>
</tr>
<tr>
<td>MT</td>
<td>6.34</td>
<td>2.25</td>
<td>5.77</td>
</tr>
</tbody>
</table>

Table 1: Means and standard deviations of mathematical knowledge (PMP), attitudes toward statistics (SATS) subscales, and achievement (midcourse test = MT) for Males and Females

<table>
<thead>
<tr>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PMP</td>
<td>.40**</td>
</tr>
<tr>
<td>2. SATS-CC</td>
<td>.35**</td>
</tr>
<tr>
<td>3. SATS-A</td>
<td>(.13)</td>
</tr>
<tr>
<td>4. SATS V</td>
<td>(.22)</td>
</tr>
<tr>
<td>5. SATS-D</td>
<td>(.34**)</td>
</tr>
<tr>
<td>6. MT</td>
<td>(.46**)</td>
</tr>
</tbody>
</table>

** Correlation is significant at the 0.01 level (2-tailed) * Correlation is significant at the 0.05 level (2-tailed)

Table 2: Intercorrelations between mathematical knowledge (PMP), attitudes toward statistics (SATS subscales: A= Affect; CC= Cognitive Competence; V=Value, D= Difficulty), and achievement (midcourse test = MT) in Males and Females
two dimensions of attitudes toward statistics were kept separate to avoid multicollinearity due to the high correlation between them ($r = .72$) that makes difficult to estimate the single contribution of each one when kept together in the same analysis. Results showed that the mathematical knowledge was a significant predictor ($F(1,79) = 29.35, p < .001$) that accounted for the 27% of the variability in achievement. Adding separately at the two dimensions of attitudes, results showed that the model was significant both when Cognitive Competence was included ($F(2,78) = 22.78, p < .001$), and when Affect was included ($F(2,78) = 17.53, p < .001$). In both cases, they contributed significantly to explain achievement along with mathematical knowledge. Nonetheless, Affect explained only an additional 4% whereas Cognitive Competence accounted for an additional 10% of the variability in achievement.

DISCUSSION

The current study aimed at investigating the interplay among previous competence, attitudes, and achievement in statistics and taking into account gender-related differences. In detail, the first aim was investigating gender differences in attitudes toward statistics and the relationships with mathematical competences. As expected (and in line with Auzmendi, 1991; Tempelaar & Nijhuis, 2007), when compared to men, women were less confident about their own ability in dealing with statistics, perceived it more difficult, and had more negative feeling about the discipline. However, the present results shows that these differences were not related to different mathematical knowledge since any gender differences were detected in mathematical basics deemed necessary for introductory statistics courses. The second aim concerned the predictive role of mathematical knowledge and attitudes toward statistics on achievement. Confirming previous results, the Cognitive Competence, Affect and Difficulty components, but not the Value one, were related to achievement (Tempelaar et al., 2007; Wisenbaker et al., 2000), as well as mathematical knowledge (e.g., Chiesi & Primi, 2010; Harlow et al., 2002; Schutz et al., 1998; Tremblay et al., 2000; Wisenbaker et al., 2000).

Concerning gender differences, as expected, gender induced changes in the relationships between achievement and its predictors. More in detail, mathematical knowledge was the only significant predictor for men, whereas along with mathematical knowledge – the Affect and Cognitive Competence attitude components had an additional effect on performance for women. That is, low self-perceived abilities accounted for worse achievement, and more negative affect was associated to lower achievement (and vice versa). In particular, Affect had a smaller effect than Cognitive Competence.

Given these findings, it becomes important to identify methods for counteracting female students’ tendency to underestimate their competence and to have negative feeling toward the discipline. In this way it could be possible to promote a better approach to the discipline and, as a consequence, a better performance. Specifically, it might be useful to arrange activities during the course in which students could realize that they can master the topics, develop confidence, perceive the subject easier, and reduce negative feelings toward the discipline. Thus, future researches might be conducted collecting repeated measures of attitudes from the beginning to the end of the course in order to monitor changes that might be due to the course itself and to specific activities implemented by teachers and tutors.

The present study has some limitations that we have to take into account when interpreting the results. First, we used the midcourse test score as indicator of achievement. For the purpose of the present investigation, we deemed this measure as an adequate indicator but it could be interesting to take into account the final examination’s grades to better ascertain the role of attitudes on general achievement. In doing that, it should be necessary, as stated above, to monitor the changes in the attitudes that could occur during

<table>
<thead>
<tr>
<th>Predictors</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>R^2</th>
<th>R^2 change</th>
<th>F change</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: PMP</td>
<td>.52</td>
<td>5.42</td>
<td><.001</td>
<td>.27</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Step 2a: PMP</td>
<td>.45</td>
<td>4.52</td>
<td><.001</td>
<td>.31</td>
<td>.04</td>
<td>4.43</td>
<td><.05</td>
</tr>
<tr>
<td>+ SATS-A</td>
<td>.21</td>
<td>2.10</td>
<td><.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Step 2b: PMP</td>
<td>.40</td>
<td>4.20</td>
<td><.001</td>
<td>.37</td>
<td>.10</td>
<td>12.09</td>
<td><.01</td>
</tr>
<tr>
<td>+ SATS-CC</td>
<td>.33</td>
<td>3.48</td>
<td><.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: Hierarchical regression analyses on statistics achievement for Females. PMP = mathematical knowledge, SATS-A = Affect, SATS-CC = Cognitive Competence.
the course, i.e., to have a measure of the student’s attitudes at the end of the course, just before to take the final exam. Additionally, given the relevance of the self-confidence dimension (i.e., the trust in one’s own knowledge and skills when applied to statistics) more attention should be paid in investigating more in detail this aspect, for instance using instrument to measure specifically the student’s confidence in solving successfully typical statistic tasks. Finally, the present research was conducted with Italian psychology students and this may limit the generalizability of the current findings. Thus, future investigations should be conducted with different student populations to provide further evidence.

REFERENCES

Gender differences in attitudes toward statistics: Is there a case for a confidence gap? (Francesca Chiesi and Caterina Primi)

and business X: The challenges of educating people to lead in a challenging world (pp. 225–250). Berlin: Springer.

