H. Waki and P. Tontonoz, Endocrine Functions of Adipose Tissue, Annual Review of Pathology: Mechanisms of Disease, vol.2, issue.1, pp.31-56, 2007.
DOI : 10.1146/annurev.pathol.2.010506.091859

T. Romacho, M. Elsen, D. Röhrborn, and J. Eckel, Adipose tissue and its role in organ crosstalk, Acta Physiologica, vol.582, issue.Suppl 1, pp.733-53, 2014.
DOI : 10.1016/j.febslet.2007.11.081

URL : http://onlinelibrary.wiley.com/doi/10.1111/apha.12246/pdf

M. Blüher, Adipose tissue dysfunction contributes to obesity related metabolic diseases, Best Practice & Research Clinical Endocrinology & Metabolism, vol.27, issue.2, pp.163-77, 2013.
DOI : 10.1016/j.beem.2013.02.005

E. Kwon, S. Shin, Y. Cho, U. Jung, E. Kim et al., Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity, BMC Genomics, vol.13, issue.1, p.450, 2012.
DOI : 10.1152/ajpendo.00435.2007

D. Meierhofer, C. Weidner, and S. Sauer, Integrative Analysis of Transcriptomics, Proteomics, and Metabolomics Data of White Adipose and Liver Tissue of High-Fat Diet and Rosiglitazone-Treated Insulin-Resistant Mice Identified Pathway Alterations and Molecular Hubs, Journal of Proteome Research, vol.13, issue.12, pp.5592-602, 2014.
DOI : 10.1021/pr5005828

R. Toedebusch, M. Roberts, K. Wells, J. Company, K. Kanosky et al., Unique transcriptomic signature of omental adipose tissue in Ossabaw swine: a model of childhood obesity, Physiological Genomics, vol.46, issue.10, pp.362-75, 2014.
DOI : 10.1152/physiolgenomics.00172.2013

H. Yan, R. Potu, H. Lu, V. Vezzoni-de-almeida, T. Stewart et al., Dietary Fat Content and Fiber Type Modulate Hind Gut Microbial Community and Metabolic Markers in the Pig, PLoS ONE, vol.27, issue.4, p.59581, 2013.
DOI : 10.1371/journal.pone.0059581.s004

D. Brockman, X. Chen, and D. Gallaher, High-Viscosity Dietary Fibers Reduce Adiposity and Decrease Hepatic Steatosis in Rats Fed a High-Fat Diet, Journal of Nutrition, vol.144, issue.9, pp.1415-1437, 2014.
DOI : 10.3945/jn.114.191577

URL : http://jn.nutrition.org/content/144/9/1415.full.pdf

M. Weickert and A. Pfeiffer, Metabolic effects of dietary fiber consumption and prevention of diabetes, J Nutr, vol.138, pp.439-481, 2008.

F. Gondret, B. Guével, E. Com, A. Vincent, and B. Lebret, A comparison of subcutaneous adipose tissue proteomes in juvenile piglets with a contrasted adiposity underscored similarities with human obesity, Journal of Proteomics, vol.75, issue.3, pp.949-61, 2012.
DOI : 10.1016/j.jprot.2011.10.012

URL : https://hal.archives-ouvertes.fr/hal-01122161

A. Bassols, C. Costa, P. Eckersall, J. Osada, J. Sabrià et al., The pig as an animal model for human pathologies: A proteomics perspective, PROTEOMICS - Clinical Applications, vol.12, issue.Suppl 1, pp.715-746, 2014.
DOI : 10.1002/pmic.201100350

L. Kogelman, S. Pant, M. Fredholm, and H. Kadarmideen, Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network, and pathway analyses, Frontiers in Genetics, vol.3, issue.29, p.214, 2014.
DOI : 10.1111/j.1752-8062.2010.00220.x

R. Jha and J. Berrocoso, Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine, animal, vol.46, issue.09, pp.1441-52, 2015.
DOI : 10.1002/jsfa.2178

R. Myer and G. Combs, Fat supplementation of diets containing a high level of oats for growing-finishing swine., Journal of Animal Science, vol.69, issue.12, pp.4665-4674, 1991.
DOI : 10.2527/1991.69124665x

R. Barea, S. Dubois, H. Gilbert, P. Sellier, J. Van-milgen et al., Energy utilization in pigs selected for high and low residual feed intake, Journal of Animal Science, vol.88, issue.6, pp.2062-72, 2010.
DOI : 10.2527/jas.2009-2395

URL : https://hal.archives-ouvertes.fr/hal-01193557

L. Naou, T. , L. Floc-'h, N. Louveau, I. Gilbert et al., Metabolic changes and tissue responses to selection on residual feed intake in growing pigs, Journal of Animal Science, vol.90, issue.13, pp.4771-80, 2012.
DOI : 10.2527/jas.2012-5226

URL : https://hal.archives-ouvertes.fr/hal-01001044

H. Vidal, Gene expression in visceral and subcutaneous adipose tissues, Annals of Medicine, vol.155, issue.8, pp.547-55, 2001.
DOI : 10.1161/01.ATV.18.11.1716

A. Gil, J. Olza, M. Gil-campos, C. Gomez-llorente, and C. Aguilera, Is adipose tissue metabolically different at different sites?, International Journal of Pediatric Obesity, vol.85, issue.S1, pp.13-20, 2011.
DOI : 10.1152/ajpregu.00604.2009

I. Louveau and F. Gondret, GH and insulin affect fatty acid synthase activity in isolated porcine adipocytes in culture without any modifications of sterol regulatory element binding protein-1 expression, Journal of Endocrinology, vol.181, issue.2, pp.271-80, 2004.
DOI : 10.1677/joe.0.1810271

J. Ma, Z. Jiang, S. He, Y. Liu, L. Chen et al., Intrinsic Features in MicroRNA Transcriptomes Link Porcine Visceral Rather than Subcutaneous Adipose Tissues to Metabolic Risk, PLoS ONE, vol.125, issue.1085, p.80041, 2013.
DOI : 10.1371/journal.pone.0080041.s008

URL : http://doi.org/10.1371/journal.pone.0080041

F. Gondret, I. Louveau, J. Mourot, M. Duclos, S. Lagarrigue et al., Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency, Journal of Animal Science, vol.92, issue.11, pp.4865-77, 2014.
DOI : 10.2527/jas.2014-7995

URL : https://hal.archives-ouvertes.fr/hal-01207757

H. Abdi, L. Williams, and D. Valentin, Multiple factor analysis: principal component analysis for multitable and multiblock data sets, Wiley Interdisciplinary Reviews: Computational Statistics, vol.44, issue.2, pp.149-79, 2013.
DOI : 10.1016/j.csda.2007.09.023

URL : https://hal.archives-ouvertes.fr/hal-01259094

P. Langfelder and S. Horvath, Eigengene networks for studying the relationships between co-expression modules, BMC Systems Biology, vol.1, issue.1, p.54, 2007.
DOI : 10.1186/1752-0509-1-54

URL : https://bmcsystbiol.biomedcentral.com/track/pdf/10.1186/1752-0509-1-54?site=bmcsystbiol.biomedcentral.com

J. Lee, H. Jun, Y. Jia, W. Kim, S. Choi et al., Critical Role of Peroxisome Proliferator Activated Receptor-?? on Body Fat Reduction in C57BL/6J and Human Apolipoprotein E2 Transgenic Mice Fed Delipidated Soybean, Journal of Agricultural and Food Chemistry, vol.59, issue.21, pp.11872-81, 2011.
DOI : 10.1021/jf202910u

H. Kim, G. Bartley, S. Young, P. Davis, and W. Yokoyama, HPMC supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in diet-induced obese mice, Molecular Nutrition & Food Research, vol.30, issue.9, pp.1464-76, 2012.
DOI : 10.2337/dc07-9920

C. Ovilo, R. Benitez, A. Fernandez, B. Isabel, Y. Nunez et al., Dietary energy source largely affects tissue fatty acid composition but has minor influence on gene transcription in Iberian pigs, Journal of Animal Science, vol.92, issue.3, pp.939-94, 2014.
DOI : 10.2527/jas.2013-6988

H. Waller-evans, C. Hue, J. Fearnside, A. Rothwell, H. Lockstone et al., Nutrigenomics of High Fat Diet Induced Obesity in Mice Suggests Relationships between Susceptibility to Fatty Liver Disease and the Proteasome, PLoS ONE, vol.286, issue.12, p.82825, 2013.
DOI : 10.1371/journal.pone.0082825.s006

S. Myrie, R. Bertolo, W. Sauer, and R. Ball, Effect of common antinutritive factors and fibrous feedstuffs in pig diets on amino acid digestibilities with special emphasis on threonine, Journal of Animal Science, vol.86, issue.3, pp.609-628, 2008.
DOI : 10.2527/jas.2006-793

M. Jégou, F. Gondret, J. Lalande-martin, I. Tea, E. Baéza et al., NMR-based metabolomics highlights differences in plasma metabolites in pigs exhibiting diet-induced differences in adiposity, European Journal of Nutrition, vol.73, issue.3, 2015.
DOI : 10.2527/1995.73123649x

D. Finley, Recognition and Processing of Ubiquitin-Protein Conjugates by the Proteasome, Annual Review of Biochemistry, vol.78, issue.1, pp.477-490, 2009.
DOI : 10.1146/annurev.biochem.78.081507.101607

K. Dasuri, L. Zhang, P. Ebenezer, S. Fernandez-kim, A. Bruce-keller et al., Proteasome alterations during adipose differentiation and aging: links to impaired adipocyte differentiation and development of oxidative stress, Free Radical Biology and Medicine, vol.51, issue.9, pp.1727-1762, 2011.
DOI : 10.1016/j.freeradbiomed.2011.08.001

J. Wilson, Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function, Journal of Experimental Biology, vol.206, issue.12, pp.2049-57, 2003.
DOI : 10.1242/jeb.00241

A. Chandler and R. Moore, Glycogen deposition in adipose tissue: Variations in levels of glycogen-cycle enzymes during fasting and refeeding, Archives of Biochemistry and Biophysics, vol.108, issue.2, pp.183-92, 1964.
DOI : 10.1016/0003-9861(64)90374-1

H. Chen, S. Wang, L. Chen, Y. Chen, M. Wu et al., MicroRNA-344 inhibits 3T3-L1 cell differentiation via targeting GSK3?? of Wnt/??-catenin signaling pathway, FEBS Letters, vol.13, issue.3, pp.429-464, 2014.
DOI : 10.1101/gad.13.3.270

N. Begum, H. Tepperman, and J. Tepperman, Effect of High Fat and High Carbohydrate Diets on Adipose Tissue Pyruvate Dehydrogenase and Its Activation by a Plasma Membrane-Enriched Fraction and Insulin*, Endocrinology, vol.110, issue.6, pp.1914-1935, 1982.
DOI : 10.1210/endo-110-6-1914

O. Hea, E. Leveille, and G. , Significance of adipose tissue and liver as sites of fatty acid synthesis in the pig and the efficiency of utilization of various substrates for lipogenesis, J Nutr, vol.99, pp.338-382, 1969.

J. Mourot and M. Kouba, Development of intra- and intermuscular adipose tissue in growing Large White and Meishan pigs, Reproduction Nutrition Development, vol.39, issue.1, pp.125-157, 1999.
DOI : 10.1051/rnd:19990145

URL : https://hal.archives-ouvertes.fr/hal-00900287

M. Kreuzer, H. Hanneken, M. Wittmann, M. Gerdemann, and A. Machmuller, Effects of different fibre sources and fat addition on cholesterol and cholesterol-related lipids in blood serum, bile and body tissues of growing pigs, Journal of Animal Physiology and Animal Nutrition, vol.86, issue.3-4, pp.57-73, 2002.
DOI : 10.1016/S0377-8401(01)00194-8

R. Mahley and Z. Ji, Remnant lipoprotein metabolism: Key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E, J Lipid Res, vol.40, pp.1-16, 1999.

C. Tao, A. Sifuentes, and W. Holland, Regulation of glucose and lipid homeostasis by adiponectin: Effects on hepatocytes, pancreatic ????cells and adipocytes, Best Practice & Research Clinical Endocrinology & Metabolism, vol.28, issue.1, pp.43-58, 2014.
DOI : 10.1016/j.beem.2013.11.003

G. Zhang, J. Lu, Y. Chen, P. Guo, Z. Qiao et al., ChREBP and LXR?? mediate synergistically lipogenesis induced by glucose in porcine adipocytes, Gene, vol.565, issue.1, pp.30-38, 2015.
DOI : 10.1016/j.gene.2015.03.057

Y. Gosmain, N. Dif, V. Berbe, E. Loizon, J. Rieusset et al., Regulation of SREBP-1 expression and transcriptional action on HKII and FAS genes during fasting and refeeding in rat tissues, Journal of Lipid Research, vol.385, issue.4, pp.697-705, 2005.
DOI : 10.1074/jbc.M111041200

C. Yokoyama, X. Wang, M. Briggs, A. Admon, J. Wu et al., SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene, Cell, vol.75, issue.1, pp.187-97, 1993.
DOI : 10.1016/S0092-8674(05)80095-9

C. Butkinaree, K. Park, and G. Hart, O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress, Biochim Biophys Acta, vol.2010, pp.96-106, 1800.

G. Den-besten, A. Bleeker, A. Gerding, K. Van-eunen, R. Havinga et al., Short-Chain Fatty Acids Protect Against High-Fat Diet???Induced Obesity via a PPAR??-Dependent Switch From Lipogenesis to Fat Oxidation, Diabetes, vol.64, issue.7, pp.2398-408, 2015.
DOI : 10.2337/db14-1213

E. Dewulf, P. Cani, A. Neyrinck, S. Possemiers, A. Van-holle et al., Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPAR??-related adipogenesis in the white adipose tissue of high-fat diet-fed mice, The Journal of Nutritional Biochemistry, vol.22, issue.8, pp.712-734, 2011.
DOI : 10.1016/j.jnutbio.2010.05.009

G. Li, W. Yao, and H. Jiang, Short-Chain Fatty Acids Enhance Adipocyte Differentiation in the Stromal Vascular Fraction of Porcine Adipose Tissue, Journal of Nutrition, vol.144, issue.12, pp.1887-95, 2014.
DOI : 10.3945/jn.114.198531

J. Pepping, L. Freeman, S. Gupta, J. Keller, and A. Bruce-keller, NOX2 deficiency attenuates markers of adiposopathy and brain injury induced by high-fat diet, AJP: Endocrinology and Metabolism, vol.304, issue.4, pp.392-404, 2013.
DOI : 10.1152/ajpendo.00398.2012

A. Kohl, O. Gögebakan, M. Möhlig, M. Osterhoff, F. Isken et al., Increased interleukin-10 but unchanged insulin sensitivity after 4 weeks of (1, 3)(1, 6)-??-glycan consumption in overweight humans, Nutrition Research, vol.29, issue.4, pp.248-54, 2009.
DOI : 10.1016/j.nutres.2009.03.002

L. Francescut, T. Steiner, S. Byrne, K. Cianflone, S. Francis et al., The Role of Complement in the Development and Manifestation of Murine Atherogenic Inflammation: Novel Avenues, Journal of Innate Immunity, vol.4, issue.3, pp.260-72, 2012.
DOI : 10.1159/000332435

S. Zenker, J. Panteleev-ivlev, S. Wirtz, T. Kishimoto, M. Waldner et al., A Key Regulatory Role for Vav1 in Controlling Lipopolysaccharide Endotoxemia via Macrophage-Derived IL-6, The Journal of Immunology, vol.192, issue.6
DOI : 10.4049/jimmunol.1300157

S. Polakof, M. Díaz-rubio, D. Dardevet, J. Martin, E. Pujos-guillot et al., Resistant starch intake partly restores metabolic and inflammatory alterations in the liver of high-fat-diet-fed rats, The Journal of Nutritional Biochemistry, vol.24, issue.11, pp.1920-1950, 2013.
DOI : 10.1016/j.jnutbio.2013.05.008

URL : https://hal.archives-ouvertes.fr/hal-01056777

F. Van-tienen, P. Lindsey, C. Van-der-kallen, and H. Smeets, Prolonged Nrf1 overexpression triggers adipocyte inflammation and insulin resistance, Journal of Cellular Biochemistry, vol.27, issue.6, pp.1575-85, 2010.
DOI : 10.2337/diacare.27.5.1047

H. Chang and L. Guarente, SIRT1 and other sirtuins in metabolism, Trends in Endocrinology & Metabolism, vol.25, issue.3, pp.138-183, 2014.
DOI : 10.1016/j.tem.2013.12.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943707

L. Serrano-marco, M. Chacón, E. Maymó-masip, E. Barroso, L. Salvadó et al., TNF-?? inhibits PPAR??/?? activity and SIRT1 expression through NF-??B in human adipocytes, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1821, issue.9, pp.1177-85, 1821.
DOI : 10.1016/j.bbalip.2012.05.006

H. Gilbert, J. Bidanel, J. Gruand, J. Caritez, Y. Billon et al., Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits, Journal of Animal Science, vol.85, issue.12, pp.3182-3190, 2007.
DOI : 10.2527/jas.2006-590

R. Development and C. Team, R: a language and environment for statistical computing. R foundation for Statistical Computing, 2008.

W. Fu, A. Stromberg, K. Viele, R. Carroll, and G. Wu, Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology???, The Journal of Nutritional Biochemistry, vol.21, issue.7, pp.561-72, 2010.
DOI : 10.1016/j.jnutbio.2009.11.007

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate -A practical and powerful approach to multiple testing, J Royal Stat Soc Series B-Methodol, vol.57, pp.289-300, 1995.

B. Zhang and S. Horvath, A General Framework for Weighted Gene Co-Expression Network Analysis, Statistical Applications in Genetics and Molecular Biology, vol.4, issue.1, p.17, 2005.
DOI : 10.2202/1544-6115.1128

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.471.9599

W. Da-huang, B. Sherman, Q. Tan, J. Collins, W. Alvord et al., The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists, Genome Biology, vol.8, issue.9
DOI : 10.1186/gb-2007-8-9-r183

P. Blavy, F. Gondret, S. Lagarrigue, J. Van-milgen, and A. Siegel, Using a large-scale knowledge database on reactions and regulations to propose key upstream regulators of various sets of molecules participating in cell metabolism, BMC Systems Biology, vol.8, issue.1, p.32, 2014.
DOI : 10.1111/j.1432-1033.1990.tb19137.x

URL : https://hal.archives-ouvertes.fr/hal-00980499

A. Vincent, I. Louveau, F. Gondret, C. Tréfeu, H. Gilbert et al., Divergent selection for residual feed intake affects the transcriptomic and proteomic profiles of pig skeletal muscle, Journal of Animal Science, vol.93, issue.6, pp.2745-58, 2015.
DOI : 10.2527/jas.2015-8928

URL : https://hal.archives-ouvertes.fr/hal-01211015