Undecidability of Equality in the Free Locally Cartesian Closed Category

Abstract : We show that a version of Martin-Löf type theory with extensional identity, a unit type N 1 , Σ, Π, and a base type is a free category with families (supporting these type formers) both in a 1-and a 2-categorical sense. It follows that the underlying category of contexts is a free locally cartesian closed category in a 2-categorical sense because of a previously proved biequivalence. We then show that equality in this category is undecidable by reducing it to the undecidability of convertibility in combinatory logic.
Type de document :
Communication dans un congrès
TLCA 2015 13th International Conference on Typed Lambda Calculi and Applications, Jul 2015, Varsovie, Poland. 13th International Conference on Typed Lambda Calculi and Applications, 〈http://rdp15.mimuw.edu.pl/index.php?site=tlca〉. 〈10.4230/LIPIcs.TLCA.2015.138〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01286479
Contributeur : Pierre Clairambault <>
Soumis le : lundi 14 mars 2016 - 09:13:16
Dernière modification le : jeudi 4 octobre 2018 - 01:15:41
Document(s) archivé(s) le : dimanche 13 novembre 2016 - 15:16:42

Fichier

tlca2015.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Simon Castellan, Pierre Clairambault, Peter Dybjer. Undecidability of Equality in the Free Locally Cartesian Closed Category. TLCA 2015 13th International Conference on Typed Lambda Calculi and Applications, Jul 2015, Varsovie, Poland. 13th International Conference on Typed Lambda Calculi and Applications, 〈http://rdp15.mimuw.edu.pl/index.php?site=tlca〉. 〈10.4230/LIPIcs.TLCA.2015.138〉. 〈hal-01286479〉

Partager

Métriques

Consultations de la notice

209

Téléchargements de fichiers

56