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Predicting traffic load in public transportation networks

Stefan Haar∗ and Simon Theissing∗

Abstract— This work is part of an ongoing effort to under-
stand the dynamics of passenger loads in modern, multimodal
transportation networks (TNs) and to mitigate the impact of
perturbations, under the restrictions that the precise number of
passengers in some point of the TN that intend to reach a certain
destination (i.e. their distribution over different trip profiles) is
unknown. We introduce an approach based on a stochastic
hybrid automaton model for a TN that allows to compute
how such probabilistic load vectors are propagated through
the TN, and develop a computation strategy for forecasting the
network’s load a certain time in the future.

I. INTRODUCTION

We continue here the work begun in [1] for capturing both
the discrete vehicle movements and continuous passenger
transfers in a multimodal public transportation network (TN).
In [1], a deterministic hybrid automaton (DHA) model was
used, in order to overcome the state space explosion problem
via fluidification. For its specification we were using discrete
and continuous Petri nets (PNs) as the basic modelling blocks
[2], with the feature that the marking of the continuous places
and thus the flows in-between were not restricted to scalars.
Instead, we were integrating different passenger profiles into
vector markings and -flows, together with routing matrices
relating both.

Now - and this is the starting point of the present work
- a real TN is everything but deterministic. On the one
hand, there are highly unpredictable asynchronous events for
which statistical data is hard to obtain. It is thus difficult
to include them in the daily network operation [3], e.g.
by means of minute-by-minute or hourly forecasts. Typical
examples are passenger incidents. Now, note that - apart
from few exceptions - such incidents originate locally, in one
mode or line, and then propagate to other modes or lines by
passenger transfers. And these transfers are predictable, not
necessarily deterministic, if one knows the destination or trip
profile of the passengers; in general, this can only be known
through probabilistic estimates. Finally, there are the more
“continuous” passenger arrival processes for which statistical
data is easier to obtain: How many passenger will arrive at a
station at which time? According to which route, including
which vehicle missions, will they travel?

Here, we will extend the DHA from [1] in that we
will replace all deterministic passenger arrival processes by
their stochastic counterparts, and, in doing so, introduce a
Markovian stochastic hybrid automaton (SHA) with jumps
between the discrete modes at a priori defined equidistantly
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spaced discrete points in time. We will then informally define
a computation strategy for the forecast of a TN’s load in form
of a probabilistic forward reachability problem. A look into
the literature then reveals that our SHA model knows many
preceding - similar or alternative - modelling approaches
that have been developed notably in the past two decades,
with every approach introducing the uncertainty at a different
point in the model dynamics. For instance, the authors of
[4] extended the dynamics underlying a DHA in that the
jumps between the discrete modes are either exponentially
distributed functions of time or immediate; with a weighting
function as a means to resolve conflicts among simultane-
ously enabled immediate transitions [5]. Thus, as compared
to our modelling approach, the jumps in [5] are not confined
to a countable set of discrete points in time. However, in
their modelling approach the discrete jumps are decoupled
from the continuous states, and the latter evolve according to
deterministic differential balance equations; whereas in our
model the continuous states evolve according to stochastic
differential equations (SDEs) and jumps might be coupled
to the continuous states. The authors of [6] bridge the gap
between the continuous states and the discrete jumps by
means of a guard function. Finally, the deterministic balance
equations were replaced by normally distributed balance
equations in [7]. Outside the framework of PNs, the authors
of [8] introduced an SHA that exhibits state-driven (forced)
jumps between the discrete modes subjected to sets of SDEs;
for each mode one set. This approach was extended in [9] in
that the mode transitions are no longer restricted to forced
jumps, but can be initiated by spontaneous jumps with state-

Fig. 1. A discrete mode of the SHA model is defined by the (discrete) state
of the vehicle operation. Each mode enables a set of possible passenger
transfers and thus the framework for the continuous dynamics associated
with it. State-dependent conditions trigger forced jumps between the modes.



dependent transition rates as well. The author of [10], then
showed how the SHA from [9] can be formulated in an equiv-
alent system of integro-differential equations together with
boundary conditions. Regarding the probabilistic forward
reachability problem, note that the authors of [11] presented a
grid-based asymptotic approximation method for a backward
reachability problem subjected to the dynamics of an SHA
that encounters spontaneous jumps between the discrete
modes; with a system of SDEs assigned to every mode. That
system is approximated by a Markov chain following a space
and subsequent time discretization; whereas in our approach
the discretization of the time precedes the discretization
of the space, and the latter comes along with a numerical
integration of the continuous states in a discrete mode.

In the rest of this paper, we will introduce the basic
ingredients for our SHA model in Sec. II, on top of which
we will elaborate in Sec. III the continuous dynamics for a
particular discrete mode in it (cf. Fig. 1). We will then define
a network’s vehicle load in Sec. IV that we will use in Sec.
V for computing forecasts.

II. BASIC INGREDIENTS

A. Infrastructure

The operation of all vehicles (V) involving a finite set of
runs (Z) and missions (X ), and the routing of all passengers
according to a finite set of trip profiles (Y), define the
dynamics of our SHA model. They are specified on a shared
infrastructure comprising a finite set of stations (S), another
finite set of transportation grids (G), and yet another finite
set of interfaces (I) connecting grids and stations. We will
informally introduce first this infrastructure, and then the
vehicle operation and the passenger routing. A more detailed
description can be found in [1].

Every transportation grid (TG) g ∈ G confines the lines
and thus the vehicle movements of one particular mode. It
comprises a finite set of waypoints and routes connecting
them, in which a particular waypoint refers to a distinct
discrete vehicle position and a route between two waypoints
to the possibility of a vehicle transfer between both. A
waypoint is either empty or accommodates one vehicle at
a time. A rule set then defines a deterministic resolution
between conflicting vehicle movements.

Stop 1

Drive to
stop 2 Stop 2

Drive to
stop 3 [2]

Stop 3Drive to
stop 1

Pass stop 2 [1]

Fig. 2. Sample transportation grid

Fig. 2 shows a simple TG that may accommodate two
orbital metro (sub-)lines: A vehicle at the waypoint “Stop
1” can either drive to the waypoint “Stop 2” and then to the
waypoint “Stop 3”, or it can pass the second stop. Regarding
the two integers “1” and “2” written in brackets next to “Pass
stop 2” and “Drive to stop 3”, they indicate that a vehicle
movement from the first stop to the third stop is privileged
over a conflicting vehicle movement from the second stop to
the third stop.

Every station s ∈ S can be decomposed into a finite set of
gathering points (GPs) that are connected by the possibility
of passenger transfers to other GPs, the outdoor area of the
TN, or the waypoints in the TGs. They accommodate the
transferring passengers and have limited capacities.

As an example, Fig. 3 depicts an extract of a sample
station: Before joining the station’s entrance area (= GP),
the passengers have to step down the stairs (= possibility of
a passenger transfer) starting from the TN’s outdoor area.
They can then cross the turnstiles so as to transfer to the
platform that itself is dedicated to the boarding of a vehicle
executing mission x ∈ X . Moreover, the entrance area can
accomodate 50 passengers, and the platform 200.

Finally, every interface i ∈ I establishes the link between
a GP of a station and a waypoint in a TG, or vice versa (cf.
4): A passenger on-board a vehicle stopped at the waypoint
“Stop 1” and executing the mission x1 ∈ X can alight from
it to the GP “Platform 1” from which s/he can either exit the
station or transfer to the GP “Platform 2”. Then, from the
“Platform 2” a passenger can board a vehicle iff that vehicle
is executing the mission x2 ∈ X and stopped at the waypoint
“Stop 2”.

B. Vehicle operation

Every vehicle mission x ∈ X defines a path in a TG, a
sequence of stops at the waypoints, and deterministic driving
times in between: The vehicle stops are specified by pairs
of minimum and maximum dwell times that are assigned to
every waypoint. In particular, a positive minimum dwell time
indicates that a vehicle has to stop at a waypoint. A positive
maximum dwell time, on the contrary, applies iff a vehicle’s
intended movement is not conflicting with that of another
one, i.e., a vehicle movement with a higher priority. Now
every vehicle run z ∈ Z specifies a sequence of vehicle
missions, and assumes a vehicle realizing it to be in the
operational state “Parking” shortly before and afterwards.
Finally, the dispatch plan Pd defines which vehicle is sup-
posed to start realizing which vehicle run at which time.
The emphasis here is on “supposed” since the dispatch of a

Step down
the stairs

Entrance area
[50]

Cross the
turnstiles

Platform
[200]

x
Board

Fig. 3. Extract of a sample station
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Fig. 4. Passenger transfer in a station between two lines including the
graphical specification of four trip profiles

vehicle at a particular time obviously requires that the vehicle
is available, i.e., parked at the correct waypoint.

C. Passenger routing

In the infrastructure from Fig. 4, we decorate every arc
with a subset of the set Y = {1, 2, 3, 4} of trip profiles (with
set brackets omitted) for their specification: Every trip profile
y ∈ Y fixes routing of the corresponding group of passengers
in the TN along a tree in the infrastructure. That way one
can account for alternative vehicle missions in the routing
of the same group of passengers. For instance, a particular
trip profile might be specified s.t. a passenger at the platform
of a station will only board one particular vehicle mission,
whereas a passenger, who is travelling according to another
trip profile, is taking whatever vehicle mission is arriving
next. Once having specified all trip profiles, they can then be
mapped to square matrices assigned to all possible passenger
transfers in the infrastructure. We can also integrate the
possibility of re-routing into these routing matrices; such a
re-routing means that passenger change their trip profiles [1].

III. PASSENGER FLOWS IN A MACRO STATE
A. Macro states

At any given time, the TN is in one of its discrete states
in terms of the vehicle operation (where are the vehicles,
are they stopped in a station allowing boarding, or moving
between stations etc); we call these untimed discrete states
macro states of the SHA. That is, a macro state gives (i)
the positions of all vehicles in form of discrete waypoints in
the TGs, (ii) which vehicles are in operation, (iii) which of
them are stopped, and (iv) the run, together with the current
mission, that each vehicle is executing.

Definition 1: A macro state of a TN = {G, S, I, V , X ,
Z , Y , Pd} is a tuple M := (V+ , V−, νp, νr νx), where
• V+ ⊆ V is the set of vehicles in operation,
• V− ⊆ V+ is the set of stopped vehicles,
• νp : V →

⋃
g∈G

P (g) gives the position νp(v) of v ∈ V ,

in which P (g) denotes the set of all waypoints in g ∈ G,
• νr : V+ → Z gives the run νr(v) of v ∈ V+, and
• νx : V+ → X gives the mission νx(v) of v ∈ V+.

Thus, every macro state uniquely fixes all passenger flows
that are possible in it: the flow of passengers entering the

system, and the flows between the GP’s in the stations and
the stopped vehicles, in which we assume that the passengers
on-board a vehicle can alight from it iff the vehicle is stopped
at a waypoint, and, according to the specification of all
interfaces, that waypoint is connected to a GP in a station.
Similarly, we also assume that a passenger at a platform can
board a vehicle iff that vehicle is stopped at a waypoint that
can be accessed from the platform.

B. Balance equations

The continuous dynamics in any macro state is given by
a system of decoupled stochastic differential (Itô) equations
for time τ ≥ 0, of the form

dXs(τ) = As (Xs(τ)) dτ +Bs dW(τ), (1)

with one such equation for every station s ∈ S . In Eqn. 1,
Xs is the state vector of the passenger loads of (i) every GP
in s, and (ii) every vehicle docked to s, i.e., every v ∈ V−
that can be accessed from a GP in s due to the specification
of a particular interface. Assuming that there are c1 ∈ N>0

GPs in s and c2 ∈ N≥0 vehicles docked to s, then Xs ∈ Rm,
in which m := (c1 +c2)n, and n := |Y| denotes the number
of different trip profiles. As is the drift of Xs, and Bs its
diffusion. Finally, W denotes an n-dimensional Wiener
process1 [12]. Again, note that the equations for different
stations are decoupled.

We obtain Eqn. 1 by setting up the balance equations for
all passenger loads contributing to Xs. In this context, we
note that we do not have to set up separate balance equations
for the complementary free capacities since they can be
deduced from the capacity limits of the GPs and the vehicles,
respectively. Thus, if (i) P s denotes the set of all GPs in s,
(ii) Vs the set of all stopped vehicles that are docked to
s, and (iii) ms(k, τ), with ms : P s ∪ Vs × R≥0 → Rn,
the n-dimensional passenger load of a GP k ∈ P s or a
vehicle k ∈ Vs, we can then compute its complementary
free capacity m′s(k, τ), with m′s(k, τ) : P s∪Vs×R≥0 → R,
from the invariant

m′s
(
k′, τ

)
= m′s

(
k, 0
)

+ 1T (ms(k, 0)−ms(k, τ)) . (2)

Therein, 1 denotes an n-dimensional column matrix with
ones only, and 1T its transpose. Moreover, note that the
domains for passenger loads and free capacities are not
restricted to the positive reals in Eqn. 1; a constraint that we
will explicitly enforce in its numerical computation. That
being said, the balance equation for the passenger load of
every k ∈ P s ∪ Vs at τ ≥ 0 reads

dms (k, τ) :=
∑
t∈•k

Rs (t)
(
φs (t, τ) dτ + Ds (t) dW(τ)

)
−
∑
t∈k•

φs (t, τ) dτ.

(3)

Equation 3 relates the temporal change of ms(k, τ) to
the diffusion, passenger flow, and routing matrix that

1A continuous-time stochastic process with independent and stationary
increments Wt −Ws whose law is Gaussian with parameter t− s



come along with every passenger transfer t ∈ •k ∪ k•
joining or leaving it, in which •k/k• denotes the set of all
incoming/outgoing passenger transfers w.r.t. k. In particular,
Ds(t), Ds : T s → {K ∈ Rn×n : K[i, j] = 0 for any i 6= j}
specifies the diffusion, φs(t, τ), φs : T s × R≥0 → R≥0

n,
the passenger flow, and Rs(t), Rs : T s →
{K ∈ [0, 1]n×n : K[·, i] ∈ {0, 1} for any i ∈ {1, 2, . . . , n}}
the routing of φs(t, τ) assigned to t at τ ; in which K[·, j]
denotes the j-th column of a matrix K, and K[i, j] the
element in the i-th row thereof.

Now regarding the specification of Ds, recall that un-
certainty enters the TN in form of the passengers arriving
at the stations from its outdoor area. In other words, we
do not know how many passengers arrive at which time
and according to which trip profile. However, once having
entered, the routing of every passenger including the vehicle
operation is deterministic. We then demand Ds to be zero for
every passenger transfer (not arrival), i.e. either (i) a transfer
in a station between two GPs, or (ii) a transfer between
a vehicle docked to a station and a GP, or (iii) a flow of
passengers leaving a station from a GP to the outdoor area
of the TN. For the arrival processes, Ds is a tuning parameter
that modulates the variances of the multidimensional Wiener
process; again, one dimension per trip profile. Then, turning
towards φs, we note that its specification depends on the
particular use case as discussed in [1]. Finally, Rs is deduced
from the graphical specification of all trip profiles and the
re-routing of the passengers; again, compare the discussion
in [1].

C. Numerical integration
In practice, there are two dominant approaches to comput-

ing the temporal change of an initial distribution subjected
to Eqn. 1. On the one hand, there is the Monte Carlo method
[13]: From the pool of all possible solution paths, some
paths are selected “randomly” and possibly several times
[14, pp. 274-277]. In this approach, one thus would have
to ensure that the correlation between the selected solution
paths matches the correlation found in the actual stochastic
process. Of course, this is a difficult task especially if the
statistical data is not at hand, as is often the case in degraded
modes of operation of TNs. The second approach is the one
we will use here: Integrate the Itô process from Eqn. 1 into
systems of linear parabolic partial differential equations (one
for every station s ∈ S):

∂

∂τ
ps(x, τ) =−

N∑
i=1

∂

∂xi

(
As(x)[i] ps(x, τ)

)
+

1

2

N∑
i=1

N∑
j=1

Ψs[i, j]
∂2

∂xixj
ps(x, τ),

(4)

with As, Bs from (1) and the abbreviation Ψs := BsB
T
s .

This system is also known as the (multidimensional) Fokker-
Planck (FP) or the Kolmogorov forward equation, and de-
scribes the time evolution of the probability density function
(PDF)

ps : Rm × R≥0 → [0,∞).

We then note that by introducing the probability flux

fs(x, τ) := As(x) ps(x, τ)− 1

2
Ψs



∂
∂x1

ps(x, τ)

∂
∂x2

ps(x, τ)
...

∂
∂xm

ps(x, τ)

 , (5)

we can rewrite Eqn. 4 and obtain the continuity equation

∂

∂τ
ps(x, τ) + div (fs(x, τ)) = 0 (6)

in its differential form. Therein,

div (fs(x, τ)) :=

N∑
i=1

∂

∂xi
fs(x, τ) (7)

denotes the divergence operation applied to the probability
flux from Eqn. 5. Now from this continuity equation we
can derive reflecting boundary conditions for the numerical
integration of Eqn. 4 that confine the probability flux to the
closed convex polytope Ks ⊂ Rm. Note that Ks comprises
all those states x ∈ Rm that do not violate the capacity
limits of the GPs and vehicles on the one hand, nor the non-
negativity of the passenger loads themselves on the other
hand. Here, we summarize only the major steps in their
derivation in an informal manner, and refer to the literature
[15, Chapter 5] for more details: Starting point is the insight
that the cumulative probability of Xs adopting a value in
Ks at any time instant τ ∈ R≥0 must be one. Thus, the
time derivative of this cumulative probability must be zero.
Then, after some transformations employing the divergence
theorem, we obtain the reflecting boundary condition

fs(x, τ)ns(x) = 0, ∀τ ∈ R≥0. (8)

Therein, ns(x), with ns : ∂Ks → Rm, denotes the orthonor-
mal vector that (i) has its origin at the state x ∈ ∂Ks, i.e., the
boundary of Ks, and (ii) is pointing in the outward direction
of Ks.

From this, it will be possible to compute the time evolution
of the PDF subjected to Eqn. 1 starting from τ = 0, by
including the initial value problem (IVP) in form of Eqn.
4, Eqn. 5, and Eqn. 8 in a numerical integration scheme
such as the Crank-Nicolson method in combination with the
multigrid method [16].

At this point, note that the numerical computation of the
IVP above introduces a discretization of the passenger load
space, which we tried to circumvent by the fluidification of
all passenger flows before. Given the high-dimensionality
of Eqn. (1), this new discretization might be prohibitive
assuming that no further model simplifications are made; on
which we are currently working.

IV. VEHICLE LOAD

So far, we have introduced the basic ingredients for our
SHA model, provided a definition for a macro state, and
shown how the SDE system from Eqn. 1 encapsulated
in every macro state can be integrated into a numerical



integration scheme so as to compute the time evolution of
an initial PDF regarding the passenger loads at every GP in
a station and on-board every vehicle docked to that station.
Now we are going to integrate the numerical integration in
a macro state into a computation strategy, which takes an
initial estimation of the TN’s load and propagates it into a
target set, for prediction of the load’s distribution in some
time horizon.

The network load can be decomposed into a vehicle load
and a passenger load, for every GP in every station and
every vehicle; we introduce the vehicle load as a separate
mathematical object.

Definition 2: A vehicle load of a TN = {G, S, I, Z , X ,
Y} is a tuple L := (M , νdr, νdw), where
• M is a macro state according to Def. 1,
• νdr : V+ \ V− → R≥0 gives the elapsed driving time
νdr(v) of v ∈ V+ \ V− on its way to νp(v), and

• νdw : V− → R≥0 gives the elapsed dwell time νdw(v)
of v ∈ V− at νp(v).

Thus, a vehicle v ∈ V+ \ V− with its discrete position
pointing to a waypoint p in a transportation grid, is not
physically located at p. Rather, it is on its way to p (from
its previous discrete position) but has not yet arrived.

Definition 3: A network load of a TN = {G, S, I, Z , X ,
Y} is a tuple Q := (L,m), where
• L is a vehicle load according to Def. 2, and
• m :

⋃
s∈S

P s ∪ V → Rn
≥0 gives the passenger load m(a)

of a ∈ P s in s ∈ S or a ∈ V , in which P s denotes the
set of all GPs in s.

The prediction of the TN’s load at a time instant τ0 ∈ R≥0

requires the computation of the probability that this network
load is contained in some closed region, which is a function
of time to be treated with caution. For instance, we might be
interested in the probability according to which a platform
will be overcrowded within half an hour and half an hour
plus r ∈ N>0 minutes, starting from τ0. Assuming this to be
true, we are then not interested in the network load at any
time instant τ ∈ [τ0, τ0+30 min)∪(τ0+30 min+r min,∞).
In this context, note that we can always deduce the prediction
horizon h := max ∆H from the set ∆H ⊂ 2R≥0 , in which
2R≥0 denotes the power set of R≥0, of all - overlapping
or non-overlapping - time intervals confining the network
load to a closed region as a function of time that we will
call the target region; providing us an upper bound for our
computation strategy: Starting from some initial network
load at τ0, we will allow the TN to change its vehicle load (=
jump of the SHA’s discrete state) only at any discrete point
in time τ ∈ H, in which H := {τ0 +∆τ , τ0 +2 ∆τ , . . . , τ0 +
γ ∆τ}, γ := max {i ∈ N : i∆τ ≤ h}, and ∆τ > 0
denotes the resolution of the prediction. However, we might
not start from one particular network load, but from a set of
initial network loads - denoted by L0 - instead; in that the
possibility of being present in any L ∈ L0 at τ0 is positive.
Accordingly, the possibility of being present in any other
vehicle load L′ 6∈ L0 is zero. Starting from any L ∈ L0

at τ0, we then compute a tree that is unfolding the time

τ0L0 L1

τ0 + ∆τL2 L3 L4

τ0 + 2 ∆τL5 L6 L7

Fig. 5. Unfolding of the time evolution of the TN’s vehicle load for the
prediction horizon marked with two gray shaded target nodes

evolution of the TN’s vehicle load in [τ0, τ0 + h]; and by
merging all these trees, we derive a node-labelled digraph
in form of a forest that we will call the computation space
(CS) of the prediction (cf. Fig. 5): The label of every node
is a vehicle load, and with every arc connecting one node to
another comes along with an increase of ∆τ in the time
evolution of the vehicle load. Thus, the label of every node
must be a vehicle load in L0 if it has no parent. The opposite
does not necessarily hold, of course.

Finally, note that the set of all possible jumps from a
vehicle load at τ ∈ H′, with H′ := {τ0, τ0+∆τ , . . . , τ0+h−
∆τ}, to another vehicle load at τ ′ := τ+∆τ can be deduced
from the specification of the vehicle operation involving the
deterministic resolution of all conflicting vehicle movements.

V. FORECASTING NETWORK LOADS

By restricting the jumps between the vehicle loads to any
discrete point in time τ ∈ H, we implicitly assume that the
continuous dynamics of the SHA can also only change at
any τ ∈ H. In other words, if L = (M,νdr, νdw) is the
vehicle load at τ , then it is Eqn. 1 defined by M that defines
all passenger flows in the closed time interval [τ, τ + ∆τ ].
The emphasis here is on the attribute “closed”: Although, we
restrict all jumps to a finite set of consecutive discrete points
in time, we are still modelling a continuous-time (stochastic)
process; requiring us to ensure the smooth transitioning of
all continuous variables. In this context, note that we do not
model any continuous-time stochastic process. In fact, Eqn. 1
is Markovian by nature, and its integration into a framework
with jumps between vehicles loads gives a continuous-time
Markov process again. This is true since the jump condition
from a vehicle load at any time instant τ ′ ∈ H′ to another
vehicle load at time instant τ ′ + ∆τ is completely defined
by the vehicle load at any time instant τ ′′ ∈ [τ − ∆τ , τ ]
together with the passenger loads of all GPs and vehicles.
We thus can compute the prediction of the network load
starting from some initial distribution at τ0 according to the
informally described algorithm:

1) Mark the set of all target nodes in the CS.
2) Invert the CS, and compute every path that is starting

from a target node and reaching a node at τ0.
3) Invert all computed paths, compute the intersection of

their union with the marked CS, and call it the reduced
CS.

4) Inscribe every node at τ0 of the reduced CS with the
probability of presence of its vehicle load.
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Fig. 6. Reduced CS inscribed with all jump probabilities leading to the set
of target nodes (solid lines), together with those nodes and jumps (dotted
lines) that belong to the original CS but can be disregarded

5) Numerically solve the IVP in form of Eqn. 4, Eqn. 5,
and Eqn. 8 up to τ +∆τ for every node at τ and every
s ∈ S; given the PDFs of all passenger loads at τ as
input.

6) Extract the probabilities of all jumps that can occur at
τ + ∆τ from the computed PDFs at τ + ∆τ .

Note that the PDFs in point 5) are assumed to be known for
τ = τ0. On the contrary, the PDF for the IVP for a vehicle
load L at τ > τ0 is computed as the sum of all PDFs,
that are coming along with a jump to L multiplied with the
probability of that jump. Moreover, note that the probabilities
of all jumps leaving a vehicle load in the reduced CS do not
necessarily have to sum up to one as opposed to the jumps
in the original CS.

As an example, Fig. 6 depicts a reduced CS with two gray
shaded target nodes, that was derived from Fig. 5: From L0

at τ0, we do only have to account for the jump to L3 at
τ0 + ∆τ with a probability of 0.1. From L1 at τ0, however,
two jumps at τ0 + ∆τ can occur, namely one to L3 with a
probability of 0.2, and another one to L4 with a probability
of 0.8. Thus, in the time interval [τ0 + ∆τ , τ0 + 2 ∆τ ] the
probability of the vehicle load to be L4 is 0.6× 0.8 = 0.48,
and to be L3 is 0.4 × 0.1 + 0.6 × 0.2 = 0.16. Then, from
reasoning, the probability to be in L6 at τ + 2 ∆τ must also
be 0.16 since the TN’s load is evolving continuously in time;
requiring that the jump from L3 to L6 at τ0 + 2 ∆τ occurs
with probability one.

VI. DISCUSSIONS

In this paper we have extended the DHA from [1] in
that we have replaced all deterministic passenger arrival pro-
cesses by their stochastic counterparts for a TN at hand. We
then have provided a computation strategy for the forecast
of the TN’s load in form of a forward reachability problem
subjected to the automaton’s Markovian hybrid dynamics:
Starting from an initial estimation of the network load in
form of some PDFs (one for every station), the strategy
requires to propagate these PDFs into a target set of timed
vehicle loads (= discrete modes). On the way to this target
set, the propagation of the PDFs encounters jumps between
the discrete modes at a priori defined equidistantly spaced
discrete points in time. Within a discrete mode, the propaga-
tion is computed by numerically integrating systems of PDEs
subjected to boundary conditions. Now the integration of the

PDEs is known to be a difficult task, and different strategies
have been developed during the last couple of years; with
some approaches avoiding it at all such as the grid-based
asymptotic approximation of the SDEs by Markov chains
from [17]. However, at the same time sophisticated numerical
integration methods have been evolved with the multigrid
method [16] employed in our ongoing implementation. In
this context, we do also consider further simplifications
targeting the dimensions of the SDEs, e.g. by aggregating
trip profiles with common last ”miles”, or by refining the
discrete modes. Finally, note that - due to space limitations
- we could not provide the equations that formally describe
the propagation of the densities in the vehicle load tree. We
intend to provide them in a future publication, though.
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