Predicting traffic load in public transportation networks

Stefan Haar 1, 2 Simon Theissing 2, 1
2 MEXICO - Modeling and Exploitation of Interaction and Concurrency
LSV - Laboratoire Spécification et Vérification [Cachan], ENS Cachan - École normale supérieure - Cachan, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8643
Abstract : This work is part of an ongoing effort to understand the dynamics of passenger loads in modern, multimodal transportation networks (TNs) and to mitigate the impact of perturbations, under the restrictions that the precise number of passengers in some point of the TN that intend to reach a certain destination (i.e. their distribution over different trip profiles) is unknown. We introduce an approach based on a stochastic hybrid automaton model for a TN that allows to compute how such probabilistic load vectors are propagated through the TN, and develop a computation strategy for forecasting the network's load a certain time in the future.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01286476
Contributeur : Simon Theissing <>
Soumis le : mardi 29 mars 2016 - 13:50:49
Dernière modification le : mardi 17 avril 2018 - 09:08:48
Document(s) archivé(s) le : lundi 14 novembre 2016 - 08:14:15

Fichier

Root.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01286476, version 2

Citation

Stefan Haar, Simon Theissing. Predicting traffic load in public transportation networks. 2016. 〈hal-01286476v2〉

Partager

Métriques

Consultations de la notice

205

Téléchargements de fichiers

103