T. Westermann and T. Melin, Flow-through catalytic membrane reactors???Principles and applications, Chemical Engineering and Processing: Process Intensification, vol.48, issue.1, pp.17-28, 2009.
DOI : 10.1016/j.cep.2008.07.001

M. M. Pendergast and E. M. Hoek, A review of water treatment membrane nanotechnologies, Energy & Environmental Science, vol.117, issue.3, pp.1946-1971, 2011.
DOI : 10.1039/c0ee00541j

J. N. Armor, Applications of catalytic inorganic membrane reactors to refinery products, Journal of Membrane Science, vol.147, issue.2, pp.217-233, 1998.
DOI : 10.1016/S0376-7388(98)00124-0

S. Heng, Catalytic Membrane Reactor for Water and Wastewater Treatment, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00083124

E. Nagy, Diffusive Plus Convective Mass Transport Through Catalytic Membrane Layer with Dispersed Nanometer-Sized Catalyst, International Journal of Composite Materials, vol.2, issue.5, pp.79-91, 2012.
DOI : 10.5923/j.cmaterials.20120205.03

A. Julbe, D. Farrusseng, and C. Guizard, Porous ceramic membranes for catalytic reactors ??? overview and new ideas, Journal of Membrane Science, vol.181, issue.1, pp.3-20, 2001.
DOI : 10.1016/S0376-7388(00)00375-6

URL : https://hal.archives-ouvertes.fr/hal-00006997

J. N. Armor, Membrane catalysis: Where is it now, what needs to be done?, Catalysis Today, vol.25, issue.3-4, pp.199-207, 1995.
DOI : 10.1016/0920-5861(95)00073-O

J. A. Kapteijn, J. Weitkamp, and J. Dalmon, Catalytic Membrane Reactors, Handbook of Heterogeneous, p.1387, 1997.

. Fig, Productivity per square meter of membrane as a function of permeate flux density. See Fig

G. Saracco, H. Neomagus, G. F. Versteeg, and W. P. Van-swaaij, High-temperature membrane reactors: potential and problems, Chemical Engineering Science, vol.54, issue.13-14, pp.1997-2017, 1999.
DOI : 10.1016/S0009-2509(99)00009-3

L. Paturzo, A. Basile, and E. Drioli, HIGH TEMPERATURE MEMBRANE REACTORS AND INTEGRATED MEMBRANE OPERATIONS, Reviews in Chemical Engineering, vol.18, issue.6, pp.511-552, 2002.
DOI : 10.1515/REVCE.2002.18.6.511

S. Papp, R. Patakfalvi, and I. Dékány, Formation and stabilization of noble metal nanoparticles, Croat. Chem. Acta, vol.80, pp.493-502, 2007.

J. Hang, L. Shi, X. Feng, and L. Xiao, Electrostatic and electrosteric stabilization of aqueous suspensions of barite nanoparticles, Powder Technology, vol.192, issue.2, pp.166-170, 2009.
DOI : 10.1016/j.powtec.2008.12.010

C. Janiak, Ionic liquids for the synthesis and stablization of nanoparticles, Z. Naturforsch, vol.68, pp.1059-1089, 2013.

S. Nath, S. Jana, M. Pradhan, and T. , Ligand-stabilized metal nanoparticles in organic solvent, Journal of Colloid and Interface Science, vol.341, issue.2, pp.333-352, 2010.
DOI : 10.1016/j.jcis.2009.09.049

H. Hagiwara, Y. Sugawara, K. Isobe, T. Hoshi, and T. Suzuki, Immobilization of Pd(OAc)2 in Ionic Liquid on Silica: Application to Sustainable Mizoroki???Heck Reaction., ChemInform, vol.6, issue.45, pp.2325-2328, 2004.
DOI : 10.1002/chin.200445096

Y. M. Yamada, T. Watanabe, T. Beppu, N. Fukuyama, K. Torii et al., Palladium Membrane-Installed Microchannel Devices for Instantaneous Suzuki-Miyaura Cross-Coupling, Chemistry - A European Journal, vol.80, issue.2, pp.16-11311, 2010.
DOI : 10.1002/chem.201000511

T. K. Carlisle, G. D. Nicodemus, D. L. Gin, and R. D. Noble, CO2/light gas separation performance of cross-linked poly(vinylimidazolium) gel membranes as a function of ionic liquid loading and cross-linker content, Journal of Membrane Science, vol.397, issue.398, pp.397-398, 2012.
DOI : 10.1016/j.memsci.2012.01.006

P. K. Gallagher and M. E. Gross, The thermal decomposition of palladium acetate, Journal of Thermal Analysis, vol.6, issue.6, pp.31-1231, 1986.
DOI : 10.1007/BF01914636

J. Durand, E. Teuma, and M. Gómez, An Overview of Palladium Nanocatalysts: Surface and Molecular Reactivity, European Journal of Inorganic Chemistry, vol.22, issue.23, pp.3577-3586, 2008.
DOI : 10.1002/ejic.200800569

URL : https://hal.archives-ouvertes.fr/hal-00346167

J. Durand, E. Teuma, F. Malbosc, Y. Kihn, and M. Gómez, Palladium nanoparticles immobilized in ionic liquid: An outstanding catalyst for the Suzuki C???C coupling, Catalysis Communications, vol.9, issue.2, pp.9-273, 2008.
DOI : 10.1016/j.catcom.2007.06.015

URL : https://hal.archives-ouvertes.fr/hal-00266231

L. Rodríguez-pérez, C. Pradel, P. Serp, M. Gómez, and E. Teuma, Supported Ionic Liquid Phase Containing Palladium Nanoparticles on Functionalized Multiwalled Carbon Nanotubes: Catalytic Materials for Sequential Heck Coupling/Hydrogenation Process, ChemCatChem, vol.43, issue.4, pp.749-754, 2011.
DOI : 10.1002/cctc.201000321

A. R. Kannurpatti, J. W. Anseth, and C. N. Bowman, A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates, Polymer, vol.39, issue.12, pp.2507-2513, 1998.
DOI : 10.1016/S0032-3861(97)00585-5

J. H. Ward, K. Furman, and N. A. Peppas, Effect of monomer type and dangling end size on polymer network synthesis, Journal of Applied Polymer Science, vol.39, issue.13, pp.3506-3519, 2003.
DOI : 10.1002/app.12519

S. Lin-gibson, R. L. Jones, N. R. Washburn, and F. Horkay, Structure???Property Relationships of Photopolymerizable Poly(ethylene glycol) Dimethacrylate Hydrogels, Macromolecules, vol.38, issue.7, pp.2897-2902, 2005.
DOI : 10.1021/ma0487002

A. M. Ortega, S. E. Kasprzak, C. M. Yakacki, J. Diani, A. R. Greenberg et al., Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system, Journal of Applied Polymer Science, vol.98, issue.3, pp.1559-1572, 2008.
DOI : 10.1002/app.28732

F. Glorius, N-Heterocyclic Carbenes in Transition Metal Catalysis, 2007.
DOI : 10.1007/978-3-540-36930-1

D. N. Muraviev, J. Macanás, J. Parrondo, M. Muñoz, A. Alonso et al., Cation-exchange membrane as nanoreactor: Intermatrix synthesis of platinum???copper core???shell nanoparticles, Reactive and Functional Polymers, vol.67, issue.12, pp.67-1612, 2007.
DOI : 10.1016/j.reactfunctpolym.2007.07.052

URL : http://hdl.handle.net/2117/27566

J. L. Rivaton, Photodegradation of polyethersulfone and polysulfone, Polymer Degradation and Stability, vol.66, issue.3, pp.385-403, 1999.
DOI : 10.1016/S0141-3910(99)00092-0

J. Kiefer, J. Fries, and A. Leipertz, Experimental vibrational study of imidazoliumbased ionic liquids: Raman and infrared spectra of 1-ethyl-3- methylimidazolium bis (trifluoromethylsulfonyl) imide and 1-ethyl-3- methylimidazolium ethylsulfate, Appl. Spectrosc, pp.61-1306, 2007.

C. Emin, J. Remigy, and J. Lahitte, Influence of UV grafting conditions and gel formation on the loading and stabilization of palladium nanoparticles in photografted polyethersulfone membrane for catalytic reactions, Journal of Membrane Science, vol.455, pp.455-55, 2014.
DOI : 10.1016/j.memsci.2013.12.049

URL : https://hal.archives-ouvertes.fr/hal-01286151

K. S. Khuong, W. H. Jones, W. A. Pryor, and K. N. Houk, The Mechanism of the Self-Initiated Thermal Polymerization of Styrene. Theoretical Solution of a Classic Problem, Journal of the American Chemical Society, vol.127, issue.4, pp.1265-1277, 2005.
DOI : 10.1021/ja0448667

M. Atilhan, J. Jacquemin, D. Rooney, M. Khraisheh, and S. Aparicio, Viscous Behavior of Imidazolium-Based Ionic Liquids, Industrial & Engineering Chemistry Research, vol.52, issue.47, pp.52-16774, 2013.
DOI : 10.1021/ie403065u

J. Jacquemin, P. Husson, A. A. Padua, and V. Majer, Density and viscosity of several pure and water-saturated ionic liquids, Green Chem., vol.8, issue.16, pp.172-180, 2006.
DOI : 10.1039/B513231B

URL : https://hal.archives-ouvertes.fr/hal-00126412

S. K. Friedlander, A note on transport to spheres in stokes flow, AIChE Journal, vol.7, issue.2, pp.347-348, 1961.
DOI : 10.1002/aic.690070237

E. Nagy, T. Blickle, and A. Ujhidy, Spherical effect on mass transfer between fine solid particle and liquid accompanied by chemical reaction, Chemical Engineering Science, vol.44, issue.1, pp.198-201, 1989.
DOI : 10.1016/0009-2509(89)85247-9

R. G. Finke, Metal nanoparticles: synthesis, characterization and applications, Marcel Deker, 2002.

H. Seto, T. Yoneda, T. Morii, Y. Hoshino, Y. Miura et al., Membrane reactor immobilized with palladium-loaded polymer nanogel for continuous-flow Suzuki coupling reaction, AIChE Journal, vol.13, issue.2, pp.61-582, 2015.
DOI : 10.1002/aic.14653

V. W. Faria, D. G. Oliveira, M. H. Kurz, F. F. Gonçalves, C. W. Scheeren et al., Palladium nanoparticles supported in a polymeric membrane: an efficient phosphine-free ???green??? catalyst for Suzuki???Miyaura reactions in water, RSC Advances, vol.121, issue.26, pp.13446-13452, 2015.
DOI : 10.1039/c4ra01104j

R. Aris, On the Dispersion of a Solute in a Fluid Flowing through a Tube, Proc. R. Soc, pp.67-77, 1956.
DOI : 10.1098/rspa.1956.0065

K. D. Nagy, B. Shen, T. F. Jamison, and K. F. Jensen, Mixing and Dispersion in Small-Scale Flow Systems, Organic Process Research & Development, vol.16, issue.5, pp.976-981, 2012.
DOI : 10.1021/op200349f

G. Taylor, Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube, Proc. R. Soc. London, pp.186-203, 1953.
DOI : 10.1098/rspa.1953.0139

T. Westermann, E. Kretzschmar, F. Pitsch, and T. Melin, Heat transfer and temperature profiles in flow-through catalytic membrane reactors, Chemical Engineering Journal, vol.155, issue.1-2, pp.371-379, 2009.
DOI : 10.1016/j.cej.2009.07.059

E. Nagy, Diffusive Plus Convective Mass Transport Through a Plane Membrane Layer, Basic Equations of the Mass Transport through a Membrane Layer, pp.121-156
DOI : 10.1016/B978-0-12-416025-5.00006-5

L. Cai, S. Panyukov, and M. Rubinstein, Mobility of Nonsticky Nanoparticles in Polymer Liquids, Macromolecules, vol.44, issue.19, pp.7853-7863, 2011.
DOI : 10.1021/ma201583q