A. Altinok, F. Lévi, and A. Goldbeter, A cell cycle automaton model for probing circadian patterns of anticancer drug delivery, Advanced Drug Delivery Reviews, vol.59, issue.9-10, pp.1036-1053, 2007.
DOI : 10.1016/j.addr.2006.09.022

M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra, Model Building and Model Checking for Biochemical Processes, Cell Biochemistry and Biophysics, vol.38, issue.3, pp.271-286, 2003.
DOI : 10.1385/CBB:38:3:271

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.233

A. Ballesta, S. Dulong, C. Abbara, B. Cohen, A. Okyar et al., A combined biological and mathematical study of the anticancer drug irinotecan molecular pharmacokineticspharmacodynamics and their control by the circadian clock

G. Batt, C. Belta, and R. Weiss, Temporal Logic Analysis of Gene Networks Under Parameter Uncertainty, IEEE Transactions on Automatic Control, vol.53, issue.Special Issue, pp.215-229, 2008.
DOI : 10.1109/TAC.2007.911330

L. Michael, J. R. Blinov, B. Faeder, W. S. Goldstein, and . Hlavacek, BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains, Bioinformatics, vol.20, issue.17, pp.3289-3291, 2004.

L. Calzone, N. Chabrier-rivier, F. Fages, and S. Soliman, Machine Learning Biochemical Networks from Temporal Logic Properties, Transactions on Computational Systems Biology VI CMSB'05 Special Issue, pp.68-94, 2006.
DOI : 10.1007/11880646_4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.5250

L. Calzone, F. Fages, and S. Soliman, BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge, Bioinformatics, vol.22, issue.14, pp.1805-1807, 2006.
DOI : 10.1093/bioinformatics/btl172

URL : https://hal.archives-ouvertes.fr/hal-01431364

L. Calzone and S. Soliman, Coupling the cell cycle and the circadian cycle, Research Report, vol.5835, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00070191

N. Chabrier and F. Fages, Symbolic Model Checking of Biochemical Networks, CMSB'03: Proceedings of the first workshop on Computational Methods in Systems Biology, pp.149-162, 2003.
DOI : 10.1007/3-540-36481-1_13

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.66.2355

N. Chabrier-rivier, M. Chiaverini, and V. Danos, Modeling and querying biomolecular interaction networks, Theoretical Computer Science, vol.325, issue.1, pp.25-44, 2004.
DOI : 10.1016/j.tcs.2004.03.063

URL : http://doi.org/10.1016/j.tcs.2004.03.063

V. Chickarmane, A. Ray, H. M. Sauro, and A. Nadim, A Model for p53 Dynamics Triggered by DNA Damage, SIAM Journal on Applied Dynamical Systems, vol.6, issue.1, pp.61-78, 2007.
DOI : 10.1137/060653925

A. Ciliberto, B. Novák, and J. J. Tyson, Steady States and Oscillations in the p53/Mdm2 Network, Cell Cycle, vol.4, issue.3, pp.488-493, 2005.
DOI : 10.4161/cc.4.3.1548

E. M. Clarke, J. R. Faeder, C. J. Langmead, L. A. Harris, S. Kumar-jha et al., Statistical Model Checking in BioLab: Applications to the Automated Analysis of T-Cell Receptor Signaling Pathway, CMSB'08: Proceedings of the fourth international conference on Computational Methods in Systems Biology, pp.231-250, 2008.
DOI : 10.1007/978-3-540-88562-7_18

E. M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking, 1999.

E. De-maria, F. Fages, and S. Soliman, Model-based predictions of the influence of circadian clock genes knock-outs on the cell cycle, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00424950

E. De-maria, F. Fages, and S. Soliman, On Coupling Models Using Model-Checking: Effects of Irinotecan Injections on the Mammalian Cell Cycle, CMSB'09: Proceedings of the seventh international conference on Computational Methods in Systems Biology, pp.142-157
DOI : 10.1007/978-3-540-88562-7_19

L. Dimitrio, Irinotecan: Modelling intracellular pharmacokinetics and pharmacodynamics. m2 master thesis (in french, english summary) Technical report, University Pierre-et-Marie-Curie and INRIA internal report, 2007.

S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer et al., PATHWAY LOGIC: SYMBOLIC ANALYSIS OF BIOLOGICAL SIGNALING, Biocomputing 2002, pp.400-412, 2002.
DOI : 10.1142/9789812799623_0038

F. Fages, Temporal logic constraints in the biochemical abstract machine BIOCHAM (invited talk), Proceedings of Logic Based Program Synthesis and Transformation, LOP- STR'05, number 3901 in Lecture Notes in Computer Science, 2005.

F. Fages and A. Rizk, On temporal logic constraint solving for analyzing numerical data time series, Theoretical Computer Science, vol.408, issue.1, pp.55-65, 2008.
DOI : 10.1016/j.tcs.2008.07.004

URL : http://doi.org/10.1016/j.tcs.2008.07.004

F. Fages and A. Rizk, From Model-Checking to Temporal Logic Constraint Solving, Proceedings of CP'2009, 15th International Conference on Principles and Practice of Constraint Programming , number 5732 in Lecture Notes in Computer Science, pp.319-33414806, 2003.
DOI : 10.1007/BFb0028736

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.156.4011

C. Gérard and A. Goldbeter, Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle, Proceedings of the National Academy of Sciences, pp.21643-21648, 2009.
DOI : 10.1073/pnas.0903827106

N. Geva-zatorsky, N. Rosenfeld, S. Itzkovitz, R. Milo, A. Sigal et al., Oscillations and variability in the p53 system, Molecular Systems Biology, vol.101, 2006.
DOI : 10.1038/msb4100068

N. Hansen and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, Evolutionary Computation, vol.9, issue.2, pp.159-195, 2001.
DOI : 10.1016/0004-3702(95)00124-7

J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn, Probabilistic Model Checking of Complex Biological Pathways, Proc. Computational Methods in Systems Biology, pp.32-47, 2006.
DOI : 10.1007/11885191_3

URL : http://doi.org/10.1016/j.tcs.2007.11.013

M. Hucka, The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, pp.524-531, 2003.
DOI : 10.1093/bioinformatics/btg015

T. Hunt and P. Sassone-corsi, Riding Tandem: Circadian Clocks and the Cell Cycle, Cell, vol.129, issue.3, pp.461-464, 2007.
DOI : 10.1016/j.cell.2007.04.015

K. W. Kohn, Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems, Molecular Biology of the Cell, vol.10, issue.8, pp.2703-2734, 1999.
DOI : 10.1091/mbc.10.8.2703

J. Leloup and A. Goldbeter, Toward a detailed computational model for the mammalian circadian clock, Proceedings of the National Academy of Sciences, pp.7051-7056, 2003.
DOI : 10.1073/pnas.1132112100

T. Matsuo, S. Yamaguchi, S. Mitsui, A. Emi, F. Shimoda et al., Control Mechanism of the Circadian Clock for Timing of Cell Division in Vivo, Science, vol.302, issue.5643, pp.255-259, 2003.
DOI : 10.1126/science.1086271

J. Nitiss and J. C. Wang, DNA topoisomerase-targeting antitumor drugs can be studied in yeast., Proceedings of the National Academy of Sciences, vol.85, issue.20, pp.7501-7505, 1988.
DOI : 10.1073/pnas.85.20.7501

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC282219

B. Novák and J. J. Tyson, A model for restriction point control of the mammalian cell cycle, Journal of Theoretical Biology, vol.230, issue.4, pp.1383-1388, 2004.
DOI : 10.1016/j.jtbi.2004.04.039

S. Ohdo, T. Makinosumi, T. Ishizaki, E. Yukawa, S. Higuchi et al., Cell cycledependent chronotoxicity of irinotecan hydrochloride in mice, Journal of Pharmacology and Experimental Terapeutics, vol.283, issue.3, pp.563-579, 1997.

C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler et al., Algorithmic Algebraic Model Checking I: Challenges from Systems Biology, Computer Aided Verification, pp.5-19
DOI : 10.1007/11513988_3

Y. Pommier, Camptothecins and Topoisomerase I; A Foot in the Door. Targeting the Genome Beyond Topoisomerase I with Camptothecins and Novel Anticancer Drugs; Importance of DNA Replication, Repair and Cell Cycle Checkpoints, Current Medicinal Chemistry-Anti-Cancer Agents, vol.4, issue.5, pp.429-434, 2004.
DOI : 10.2174/1568011043352777

Z. Qu, W. R. Maclellan, and J. N. Weiss, Dynamics of the Cell Cycle: Checkpoints, Sizers, and Timers, Biophysical Journal, vol.85, issue.6, pp.3600-3611, 2003.
DOI : 10.1016/S0006-3495(03)74778-X

A. Regev, W. Silverman, and E. Y. Shapiro, Representation and simulation of biochemical processes using the pi-calculus process algebra, Proceedings of the sixth Pacific Symposium of Biocomputing, pp.459-470, 2001.

A. Rizk, G. Batt, F. Fages, and S. Soliman, On a Continuous Degree of Satisfaction of Temporal Logic Formulae with Applications to Systems Biology, CMSB'08: Proceedings of the fourth international conference on Computational Methods in Systems Biology, pp.251-268, 2008.
DOI : 10.1007/978-3-540-88562-7_19

URL : https://hal.archives-ouvertes.fr/inria-00419781

A. Rizk, G. Batt, F. Fages, and S. Soliman, A general computational method for robustness analysis with applications to synthetic gene networks, Bioinformatics, vol.25, issue.12, pp.69-78, 2009.
DOI : 10.1093/bioinformatics/btp200

URL : https://hal.archives-ouvertes.fr/inria-00419708

T. J. Gijsbertus, M. Van-der-horst, K. Muijtjens, R. Kobayashi, . Takano et al., Mammalian cry1 and cry2 are essential for maintenance of circadian rhythms, Nature, issue.6728, pp.398627-630, 1999.

F. Yang, Y. Nakajima, M. Kumagai, Y. Ohmiya, and M. Ikeda, The molecular mechanism regulating the autonomous circadian expression of Topoisomerase I in NIH3T3 cells, Biochemical and Biophysical Research Communications, vol.380, issue.1, pp.22-27, 2009.
DOI : 10.1016/j.bbrc.2008.12.186

J. Zámborszky, C. I. Hong, and A. C. Nagy, Computational Analysis of Mammalian Cell Division Gated by a Circadian Clock: Quantized Cell Cycles and Cell Size Control, Journal of Biological Rhythms, vol.302, issue.6, pp.542-553, 2007.
DOI : 10.1177/0748730407307225

Y. Zhou, F. G. Gwadry, W. C. Reinhold, L. H. Smith, L. D. Miller et al., Transcriptional regulation of mitotic genes by camptothecin-induced dna damage : Microarray analysis of doseand time-dependent effects, Cancer Research, vol.62, pp.1668-1695, 2002.

%. Dna, MM(kdDNA*p53tot,Jdna)) for _ <=> DNAdam. add_event(Time>=10,IR,1). add_event(Time>=20

%. Mdm2, MA(kd2p)) for _ <=> Mdm2::c. ks2*p53tot^mp, Js^mp+p53tot^mp) for _ =[p53]=> Mdm2::c

M. and T. _. =>, delete_rules(_ => DNAdam). delete_event(Time>=10,IR,1). delete_event(Time>=20