Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Topology and arithmetic of resultants, II: the resultant $=1$ hypersurface (with an appendix by C. Cazanave)

Abstract : We consider the moduli space $\mathcal{R}_n$ of pairs of monic, degree $n$ polynomials whose resultant equals $1$. We relate the topology of these algebraic varieties to their geometry and arithmetic. In particular, we compute their \'{e}tale cohomology, the associated eigenvalues of Frobenius, and the cardinality of their set of $\mathbb{F}_q$-points. When $q$ and $n$ are coprime, we show that the \'etale cohomology of $\mathcal{R}_{n/\bar{\mathbb{F}}_q}$ is pure, and of Tate type if and only if $q\equiv 1$ mod $n$. We also deduce the values of these invariants for the finite field counterparts of the moduli spaces $\mathcal{M}_n$ of $SU(2)$ monopoles of charge $n$ in $\mathbb{R}^3$, and the associated moduli space $X_n$ of strongly centered monopoles. An appendix by Cazanave gives an alternative and elementary computation of the point counts.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01285091
Contributor : Christophe Cazanave <>
Submitted on : Tuesday, March 8, 2016 - 3:39:17 PM
Last modification on : Monday, October 12, 2020 - 2:28:06 PM

Links full text

Identifiers

Collections

Citation

Benson Farb, Jesse Wolfson, Christophe Cazanave. Topology and arithmetic of resultants, II: the resultant $=1$ hypersurface (with an appendix by C. Cazanave). 2016. ⟨hal-01285091⟩

Share

Metrics

Record views

62