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Abstract. The use of domain-specific languages (DSLs) is a successful
technique in the development of complex systems. Indeed, the construc-
tion of new DSLs addressing the particular needs of software projects has
become a recurrent activity. In this context, the phenomenon of specifica-
tion cloning has started to appear. Language designers often copy&paste
some parts of the specification from legacy DSLs to “reuse” formerly de-
fined language constructs. As well known, this type of practices introduce
problems such as bugs propagation, thus increasing of maintenance costs.
In this paper, we present PUZZLE, a tool that uses static analysis to facil-
itate the detection of specification clones in DSLs implemented under the
executable metamodeling paradigm. PUzzLE also enables the extraction
specification clones as reusable language modules that can be later used
to build up new DSLs.

1 Introduction

A domain-specific language (DSL) is a software language whose expressiveness is
limited to a well-defined domain. A DSL offers the abstractions (a.k.a., language
constructs) needed to describe an aspect of a system under construction. The
use of DSLs has become a successful technique to achieve separation of concerns
in the development of complex systems [5].

Naturally, the adoption of such a language-oriented vision relies on the avail-
ability of the DSLs necessary to describe all the aspects of the system under
construction [3]. As a result, the DSLs development has become a frequent ac-
tivity in software projects [7]. In this context, the phenomenon of specification
cloning has started to appear. Language designers often copy&paste some parts
of the specification from legacy DSLs with the objective to “reuse” formerly de-
fined language constructs. This practice might have some problems such as bug
replications that increase maintenance costs [11].

Ideally, reuse should correspond to a systematic practice where the language
constructs that are used in more than one DSL are defined in interdependent
language modules that can be used as plug-in pieces during the DSLs devel-
opment process. In this paper, we present PUZZLE, a tool to assist refactoring
processes intended to remove specification clones in a given set of legacy DSLs.
More precisely, PUZZLE offers the following features:
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Detection of specification clones. PUZZLE provides a set of comparison oper-
ators that enable automatic detection of specification clones in a given set of
DSLs. These operators take into account not only the names of the constructs,
but also the inter-constructs relationships and their semantics. Additionally, the
implementation of PUZZLE is flexible enough to permit the definition of new
comparison operators. Hence, the detection strategy can be easily improved or
adapted to particular contexts.

Quantification of potential reuse. PUZZLE comes out with a set of metrics
(inspired in [1]) to quantify the potential reuse emerging from the existing spec-
ification clones. The objective is to provide a mechanism that allows language
designers to estimate (in an objective fashion) the benefit of a refactoring pro-
cess intended to remove specification clones in a given set of DSLs. For example,
PUZZLE measures the amount and percentage of language constructs cloned in
a set of DSLs, as well as how different is a given DSL with respect to the others.
All these metrics are presented in the form of charts implemented as HTML
reports that can be easily shared and published.

Extraction of reusable language modules. PUZZLE enables a reverse engineer-
ing process to extract reusable language modules from the detected specification
clones [8]. This strategy is based on a principle illustrated in Figure 1: if a DSL
specification is viewed as a set of specification elements, then specification clones
can be viewed as sets overlapping, and reusable language modules can be ob-
tained by breaking down that overlapping [10]. The language modules resulting
from this refactoring process can be later assembled in the construction of new
DSLs.
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Fig. 1: Breaking down overlapping for obtaining reusable language modules

2 PUZZLE

Technological space. Like general purpose languages, DSLs are implemented in
terms of syntax and semantics. Nowadays, there are diverse technological spaces
available for the implementation of such implementation concerns [9]. PUzzLE
supports DSLs such that the syntax is specified through metamodels whereas
semantics is specified operationally through domain-specific actions [4].
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Architecture. The architecture of PUZZLE is
composed of two parts illustrated in Figure 2:

s S the infrastructure and the superstructure. The

§ b % infrastructure is a set of plug-ins that enable the

3 ¢ £ specification of DSLs according to the techno-

S s logical space described above. In turn, the su-
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Framework (EMF)

specify operational semantics. An aspect encap-
1 (" sulates a set of domain-specific actions that are
Infrastructure  Superstructure weaved into a metaclass of the metamodel. The

) ’ ) mapping between metamodels and aspects is
Fig. 2: Tool’s architecture specified in Melange!.

In turn, the superstructure of PUZZLE cor-

responds to a set plug-ins that can be divided

into three categories according to their functionalities: comparison, metrics, and

reverse-engineering. Comparison plug-ins implement the comparison operators

needed to detect specification clones at the level of abstract syntax and seman-

tics (for the case of comparison of semantics, Puzzle uses JCCD [2]. The metrics

plug-ins compute a set of metrics for the detected specification clones and present

the results as a set of HTML reports that display those metrics in the form of

charts. The reverse-engineering plug-ins implement the algorithms that extract
reusable language modules from the detected specification clones.

Tool demonstration. In the rest of this section, we provide three videos (avail-
able in the papers’ website?) that show the way in which a set of DSL defined
in the PUZZLE’s infrastructure is analyzed by the PUZZLE’s superstructure. The
PUZZLE’s source code is available in the project’s website?.

The input of PUZZLE is a Melange script that references a set of DSLs. The
analysis starts by comparing the DSLs specifications (at the level of the abstract
syntax and the semantics) and produces a first report indicating whether there
are any specification clones or not. This report looks like a Venn diagram where
each DSL is represented by a set, and intersections among sets indicate specifi-
cation clones (video 1: detecting specification clones). Then, a set of metrics is
computed from those specification clones. These metrics are intended to quantify
the specification clones among the DSLs to objectively measure the associated
potential reuse (video 2: measuring specification clones). Finally, a set of reusable

! Melange website: http://melange-1lang.org/
2 Tool demonstration: http://puzzle-demo.weebly.com/
3 Puzzle’s website: http://damende.github.io/puzzle/
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language modules is extracted from those specification clones. Those language
modules can be later assembled among them to produce new DSLs (video 3:
Reverse-engineering reusable language modules).
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