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In propagating wave systems, three or four-wave resonant interactions constitute a classical non-linear mech-
anism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-
capillary surface waves in a closed laboratory tank. We generate two crossing wave-trains and we study their
interaction. Using two optical methods, a local one (Laser Doppler Vibrometry) and a spatio-temporal one (Dif-
fusive Light Photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance
conditions in frequency and in wavenumber. Furthermore, by focusing on the stationary regime and by taking
into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then
compared to the predictions of the weakly non-linear triadic resonance interaction theory. The obtained results
confirm qualitatively and extend previous experimental results obtained only for collinear wave-trains. Finally,
we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary
turbulence.

PACS numbers: 47.27.-i, 05.45.-a, 47.35.-i, 47.52.+j

I. INTRODUCTION

When a wave-field is governed by linear propagation equa-
tions, the different space and time scales coupled by the dis-
persion relation evolve independently. In contrast, by intro-
ducing non-linearity, energy exchanges between the scales be-
come possible. Among non-linear interaction phenomena, a
particular attention has been given to the resonant interaction
mechanisms [1–3]. In the weakly non-linear limit, dispersive
waves can substantially exchange energy at long time, if their
respective angular frequencies ωi = 2π fi and wavenumbers
ki

(
‖ki‖ = ki =

2π
λi

)
satisfy the resonance conditions. For

a process involving N waves, these conditions take the form:

k1 ± k2 + . . .± kN = 0 (1)

ω(k1)± ω(k2) + . . .± ω(kN) = 0 (2)

with ω(ki) the dispersion relation of the waves.
At the lowest order of the weakly non-linear expansion, three-
wave mechanism or triadic resonance is usually considered for
a system with a quadratic non-linearity. Nevertheless if the
dispersion relation cannot satisfy the three-wave resonance
condition, four-wave mechanism occurs. This is precisely
the case of large scale surface gravity waves [4, 5], in which
resonant interactions rule dynamics and evolution of oceanic
gravity waves [6]. At smaller scales, in the crossover between
gravity and capillary waves and also for pure capillary waves,
three-wave interactions occur [7]. Triadic resonance is also
involved in numerous natural and physical examples in which
they mediate energy exchanges between the different scales,
like internal gravity waves [8] in oceanography or for three-
wave mixing in non-linear optics [9]. Recent experiments
have indeed investigated triadic resonance and verified the res-
onance condition in internal waves [10], in inertial waves in
rotating tank [11], in plasma waves [12] or in hydro-elastic
waves [13].

Moreover understanding resonant interaction mechanisms
is of prime interest in the study of wave turbulence regimes.
The dynamics of a set of numerous random waves in inter-
action, is said in a wave turbulence regime, when a self-
similar mechanism transfers energy from an injection scale
to a dissipative scale. The aim of the weak turbulence the-
ory [14, 15] is to describe this regime, by taking the main
wave resonant mechanism as the elemental process coupling
the waves. Power spectra of wave amplitude can be analyti-
cally derived as power laws of k (spatial spectrum) or ω (tem-
poral spectrum). Recently several laboratory investigations of
wave turbulence have been carried out in regard of weak tur-
bulence theory, specifically for the example of hydrodynam-
ics surface waves. At large scale, in the gravity wave regime,
involving four-wave interactions, power spectra of wave ele-
vation are generally in partial agreement with theoretical pre-
dictions. Exponent of the scale-power law depends on forc-
ing amplitude and seems to saturate close to the predicted
value [16–18]. At small scale, in the capillary wave regime,
several independent studies report in contrast observation of
the exponents given by the weak turbulence theory [18–23].
More recently the spatio-temporal characterization of capil-
lary wave turbulence [24] and the study of its decay [25] have
shown, that despite the compatibility of the spectra with weak
turbulence theory, the needed experimental conditions depart
from the theoretical framework. First viscous dissipation oc-
curs at all the scales of the turbulent cascade leading to a non
conserved energy flux [26] and anisotropy in the forcing is
conserved [24]. Then the dimensionless non-linear parameter,
i.e. the wave steepness seems too large to verify the hypoth-
esis of small non-linearity, needed to consider resonant inter-
actions. Therefore in order to solve this paradox, an exper-
imental investigation of three-wave resonant interactions of
gravity-capillary surface waves is here performed, with sim-
ilar experimental conditions than those exhibiting capillary
wave turbulence.

Although this phenomenon has been widely studied, some
important features have never been tested experimentally.
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Theoretically, by considering three waves verifying the reso-
nant condition, amplitude equations can be derived using per-
turbative [7, 27] or variational [28] methods, in which dissi-
pation is neglected. A few experimental studies tried to verify
these last results in laboratory channel tanks, by generating a
well controlled sinusoidal wave-train. The first investigations
of such interactions were performed in the seventies for a spe-
cial degenerate case, the Wilton ripples (f1 = f2 = 9.8 Hz,
f3 = 19.6 Hz for pure water), with in that case the daughter
wave collinear to the two mother waves [29]. By adding dissi-
pation as a perturbation, a conclusive agreement was found
with theory. Similar experiments observed the same phe-
nomenon under near-resonant conditions [30]. Then subhar-
monic generation of gravity-capillary waves were also stud-
ied at the beginning of the eighties [31], in which two waves
are generated from a single one at higher frequency. How-
ever, this three-wave process was not properly observed due
to occurrence of subharmonic cross-waves [3, 32]. At the
end of the eighties, the subharmonic three-wave interaction
phenomenon was appropriately reported [33–35], by demon-
strating the instability of a capillary surface wave-train, whose
frequency is above 19.6Hz. The selection process of the ob-
served triads was also studied. Moreover, in a wave turbu-
lence regime, a recent experimental study close to the gravito-
capillary crossover has shown significant occurrence of quasi
1D-three-wave interactions [36]. Finally, occurrence of three-
wave interactions was demonstrated for capillary waves under
parametric excitation [37].

In that context, the present paper investigates interac-
tions between two gravity-capillary mother waves and a third
daughter wave. By studying experimentally interactions be-
tween two sinusoidal wave trains producing a daughter wave
at higher frequency, we intend to characterize the elemen-
tal process of wave turbulence, producing a positive transfer
of energy through the small scales. This regime is indeed
formed by a dynamic superposition of multiple interactions.
In particular we aim to test the robustness of resonant interac-
tion mechanisms knowing that in small scale experiment vis-
cous dissipation is significant, multiple reflections occur, and
time scale separation is not guaranteed allowing observation
of non-resonant interactions [6, 30]. Moreover three-wave in-
teraction mechanisms for surface waves have never been ad-
dressed experimentally in the configuration where two mother
waves generate one daughter wave at higher frequency. Only
the degenerated and collinear case [29, 30] (f1 = f2; f3 =
2f1) and the subharmonic generation of two waves by one
wave at high frequency [31–33] (f1 = 2f∗; f2 = f3 = f∗)
have been experimentally investigated.

The article is organized as follows. A state of the art is
given in section I on the topics of gravity-capillary wave in-
teractions whereas section II recalls the key points of the the-
oretical background of the resonant triadic interactions. Sec-
tion III presents the experimental set up and techniques. Sec-
tion IV reports an extensive study with local and spatial mea-
surements of the triad, where two mother waves of frequency
f1 = 15 and f2 = 18Hz generate a daughter wave at the
frequency f3 = f1 + f2 = 33Hz. Section V shortly extend
the results to another triad experimentally tested (f1 = 16,

f2 = 23, f3 = 39 Hz) and draws some conclusions. Finally,
in the Appendix, characterization of wave dissipation in the
experimental set up is given.

II. THREE-WAVE RESONANCE: THEORETICAL
BACKGROUND

A. Resonance conditions

Let us consider the case of two mother waves with frequen-
cies f1 and f2 and wavevectors k1 and k2, leading to the ap-
pearance of a daughter wave with frequency f3 = f1 + f2.
Each wave i satisfies the gravity-capillary linear dispersion
relation:

ω2
i =

[
g ki +

σ

ρ
k3i

]
tanh(ki h0) (3)

with g the gravity acceleration, ρ the fluid density, σ the sur-
face tension and h0 the liquid depth at rest. As the frequencies
are imposed, norms of wave vectors ki are known by invert-
ing numerically the relation dispersion. The components of
the triad satisfy the resonance conditions:

ω1 + ω2 = ω3 k1 + k2 = k3 (4)

The angle between the two mother wave-vectors k1 and k2

is called α12. In the resonance conditions (Eq. 4), this angle
noted α12 r is completely determined by the choice of mother
wave frequencies f1 and f2.

cos(α12 r) =
k23 − (k21 + k22)

2k1k2
(5)

For the triads, we have investigated in the following, the val-
ues of α12 r are 54 deg (f1 = 15, f2 = 18 and f3 = 33 Hz)
and 59 deg (f1 = 16, f2 = 23 and f3 = 39 Hz), by taking
σ = 60 mN/m and ρ = 1000 kg/m3 for water as working
fluid. These frequencies belong to the capillary waves do-
main, but gravity is not negligible and the complete form of
the dispersion relation of Eq. 3 has to be used. A schematic
view of the wave beams of the mother waves and the result-
ing interaction zone area are given in Fig.1 a), with the corre-
sponding angle α12 r between k1 and k2. An origin O and an
axis Oξ in the direction of k1 +k2 are defined to describe the
daughter wave propagation at a given point M along Oξ.
It is also possible to determine graphically the resonant wave
vector k3r satisfying both the dispersion relation and the res-
onance conditions as illustrated in Fig. 1 b). The red circle
(continuous line) defines the loci of all the possible k3 built
by the sum of k1 + k2, different angles between them be-
ing possible when changing the orientation of the vector k2

on this circle, keeping its norm k2 constant. The green circle
(dash-dotted line) corresponds to the loci of the vectors k3r in
accordance with the dispersion relation. As a consequence the
intersection between the red and the green circles defines the
vector k3r satisfying both the resonance conditions and the
relation dispersion. Two solutions exist corresponding to op-
posite values of α12 r. If the angle between k1 and k2 differs
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FIG. 1. (color online) a) Schematic view of the interaction zone be-
tween the two mother waves. O is the origin of this zone, M locates
a point in this area along the direction Oξ given by k1 + k2. b)
Graphical construction of the triad for f1 = 15 Hz and f2 = 18 Hz
with α12 r = 54 deg (resonant angle). The green circle (dash-dotted
line) corresponds to k3r satisfying the gravity-capillary dispersion
relation and the red circle (continuous line) to all location of the ex-
tremity of vector k2. Axis are here defined relatively to k1.

from α12 r, being for example 90 deg, there is no intersection
with the green circle and hence the corresponding triad is not
satisfying the dispersion relation anymore. Moreover, varying
f2 for a given f1 changes the value of α12 r computed with
Eq. 5. Figure 2 a) shows indeed a significant increase. At the
lowest possible value of f2, α12 r = 0 and the mother waves
are collinear. The value α12 r = 90 deg, cannot be reached
and corresponds to f2 going to infinity. Note also, that another
graphical determination of triads is provided by the construc-
tion of Simmons [28], which builds in the 3D-space (kx, ky ,
ω) the loci of the vector ki to be in the resonant situation.

B. Amplitude equations

In the weakly non-linear regime, considering one isolated
triad, equations can be derived for the amplitudes and the
phases of the three waves [28]. By hypothesis, the free
surface elevation η is written as the sum of the components of
the triad taken as propagative waves:

η(x, y, t) =
3∑
i=1

ai cos(ki · x − ωi t + φi), where ai and

φi are the amplitude and the phase of the wave i. Temporal
evolutions of ai and φi are then expressed as a system of six
coupled first order linear differential equations. Moreover in
capillary wave experiments, wave dissipation due to viscosity,
needs to be taken into account. Considering a linear dissi-
pation process, amplitude equations are modified by adding
a decay term δi ai [29, 33], where δi is the viscous dissipa-
tion coefficient, i.e. the inverse of the viscous decay time at
the frequency fi. This approach is justified, if this later time
scale is small compared to the characteristic non-linear time
associated with the non-linear growth of a3. Then for each
component i of the triad, one has [33]:
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FIG. 2. (color online) For a fixed mother wave f1 = 15 Hz, a)
evolution of the angle α12 r versus f2 from Eq. 5 and b) evolution of
the interaction coefficients versus f2 from Eq. 8.

∂ai/∂t+ δiai + (vgi.∇)ai = ai+1ai+2 γi sinφ (6)

∂φi/∂t+ (vgi.∇)φi =
ai+1ai+2

ai
γi cosφ (7)

with i = 1, 2, 3 interchanged cyclically, φ the total phase de-
fined as φ = φ1 + φ2 − φ3, ∇ = (∂x, ∂y), vgi = ∂ωi/∂ki

group velocities and γi the interaction coefficients, whose ex-
pressions are given by [28]:

γi = −
ki
4ωi

3∑
j=1

ωjωj+1

(
1 +

kj.kj+1

kjkj+1

)
(8)

In this last formula, the convention of negative frequency
for ω3 is taken, in order to write the resonance conditions:
ω1 + ω2 + ω3 = 0 and k1 + k2 + k3 = 0, as defined in the
variational derivation of interaction coefficients [28]. In the
following except in the calculation of these coefficients, fre-
quencies are considered positive.
In order to provide some orders of magnitude, the evolution
of the various γi versus f2 have been plotted on Fig. 2 b),
for a fixed value of f1 = 15 Hz. The evolution with f2 is
monotonous (decreasing for γ1,2 increasing for γ3). The val-
ues of γi for (15, 18, 33) and (16, 23, 39) (shortly discussed
in section V) are reported in table I.
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ki (m−1) γi (m−1 s−1)
f1 = 15 Hz 428 -1.40×104

f2 = 18 Hz 507 -1.38×104

f3 = 33 Hz 834 1.24×104

f1 = 16 Hz 455 -1.65×105

f2 = 23 Hz 626 -1.58×104

f3 = 39 Hz 946 1.41×104

TABLE I. (color online) Norms of the wavevectors and interaction
coefficients calculated from Eq. 8. The different values are calcu-
lated with σ = 60 mN/m and ρ = 1000 kg.m−3.

The coefficients of the mother waves are negative whereas
the coefficient for the daughter wave is positive. The wave
3, initially null, would thus grow, by pumping energy from
the waves 1 and 2. With negligible dissipation, a3 is sup-
posed to grow linearly in time, at short time, as long as
a3 �

√
a1 a2. Long time behavior of the system formed by

Eqs. 6 and 7 predicts non-linear oscillations and recurrence
phenomena [2, 28], also with negligible dissipation.

To make a quantitative comparison between these theoreti-
cal results and the following experimental measurements, we
study the behavior of the daughter wave with the hypothesis
a3 �

√
a1 a2. We consider in stationary regime the evolution

of the wave amplitude a3 in the direction Oξ given by k3, as
previously explained and illustrated in Fig.1 a). From Eq. 6,
we get a linear differential equation of order one with a second
member:

vg3 ∂a3/∂ξ = −δ3a3 + a1a2 γ3 sinφ (9)

If the wave-field can be considered homogeneous and if the
total phase φ does not vary with ξ, the previous equation
can be integrated and by introducing the coordinate ξ0 where
a3(ξ0) = 0, we obtain:

a3(ξ) =
γ3 sinφ

δ3
a1a2

[
1− exp

(
− δ3
vg3

(ξ − ξ0)
)]

(10)

To be consistent ∂φ3/∂ξ = 0, then Eq. 7 imposes cosφ =
0 and thus sinφ = ±1 or φ = ±π2 . The phase locking at
φ = π/2 was supposed in most of the experimental studies of
three-wave resonance [29, 33] and was justified by a reasoning
of maximal energy transfer. Otherwise the phase φ3 would
be spatially modulated and an analytical solution cannot be
expressed any more. The dependency of a3 with the distance
ξM from the origin, ξ0, is expressed by the prefactorK, whose
expression is:

K(ξM ) = 1− exp

(
− δ3
vg3

ξM

)
(11)

As a consequence, at a given point M , a3 is expected to be
proportional to the product a1a2 and the slope can be identi-
fied to γ3 sinφK(ξM )/δ3. In the experiments, ξ0 is assumed
to be at the first crossing point between the two mother wave-
trains, in the direction of the daughter wave, i.e. the origin
point O in Fig. 1 a). As a remark for surface gravity waves,

to validate the four-wave resonant mechanism, experiments
were performed by generating two distinct waves trains cross-
ing perpendicularly [38, 39]. These experiments with negli-
gible dissipation, validated four-wave resonant interaction in
the degenerated case [5], in finite wave-basins. Similarly the
beginning of the daughter wave is taken at the first crossing
point between the two mother wave-trains.
Homogeneity of the wave-field is hard to fulfil due to viscous
dissipation and presence of boundaries, but it will be shown in
the following that by taking into account this correction with
K(ξM ), we obtain a satisfying estimation of the interaction
parameter γ3. Moreover two limit behaviors can be deduced
from Eq. 10. At short distance or for weak dissipation, a3
grows linearly with ξ:

a3 lin(ξ) =
γ3 sinφ

vg3
a1a2 (ξ − ξ0) (12)

In contrast at high enough distance, if the amplitude of mother
waves remain constant, viscous dissipation can saturate the
resonant interaction to a constant value:

a3 sat(ξ) =
γ3 sinφ

δ3
a1a2 (13)

Thus a3 grows with the distance to reach this saturation value
due to the balance between non-linear growth and viscous
dissipation. In contrast to the theory which considers an open
system, in this work, we investigate three-wave resonance in
a closed system, which is the relevant case for capillary wave
turbulence experiments. The circular boundaries of the tank
reflect indeed a part of incident waves in many directions. The
wave-field contains thus a propagative part and a standing (or
stationary) part, and this later brings inhomogeneity. In the
following, we will show that although effects of reflections
are significant, they do not modify the three-wave interaction
mechanisms. Thus reflections present in all closed tanks are
not preventing resonant interactions, but make their analysis
more complex.

III. EXPERIMENTAL SET UP

We use a circular Plexiglas (PMMA) container of diameter
240mm filled with a liquid up to a height h0 = 50mm,
corresponding to deep water wave regimes, for frequencies
considered in the following. Two gravity-capillary waves 1
(k1, ω1) and 2 (k2, ω2) are produced at the air-liquid interface
using two wave makers, consisting in two vertical rectangular
plastic paddles of width 100mm driven horizontally and
independently by two electromagnetic shakers (Brüel &
Kjaer LDS V201). The paddles are immersed 10mm under
the surface of the liquid. Recording of the input excitation
is carried out by accelerometers (Brüel & Kjaer 4393) glued
on the paddles. Note also, that the distance and the angle
between the two wave makers can be tuned.
Two optical techniques have been used to investigate the
wave-field: local measurements with a laser Doppler vibrom-
eter and spatio-temporal measurements using Diffusing Light
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FIG. 3. (color online) a) Top view of the set up for local temporal measurements: the tank is filled with water mixed with TiO
2

pigment. The
red spot is the beam of the laser vibrometer. b) Top view of the set up for spatio-temporal measurements with the DLP method. The liquid is
a solution of intralipids in water. The blue rectangle depicts the observation area S of 103 × 94mm2 where the wave-field reconstruction is
performed. c) Schematic representation of the side view of the set up for DLP spatio-temporal measurements.

Photography (DLP) method. The laser Doppler vibrometer
(Polytech OPV 506), measures the velocity at one point of the
free surface given by the position of the vertical laser beam.
The distilled water is white-dyed thanks to TiO2 pigment
(Kronos 1001, 10 g in 1L of water), to make the fluid opaque.
The laser beam is thus subjected to a diffuse reflection and
the velocity of the point at the free surface is extracted from
the interference between incident beam and back-scattered
light. After temporal integration, vibrometer can capture
deformations smaller than one micron, without any bias. For
these concentrations of TiO2, the properties of pure water
at ambient temperature (25◦C) are weakly modified. We
measure a density ratio with water ρsol T iO2

/ρwater = 1.009
and a kinematic viscosity ν = 1.02 10−6 m2.s−1 using a
Anton Paar, MCR 500 rheometer, equipped with a cone-plate
combination (diameter 50 mm, angle 1 deg). As TiO2 parti-
cles are not accumulating at the interface, surface properties
are comparable to those of pure water [40]. By measuring
the phase velocity in monochromatic experiments, we find a
surface tension of σ = 62 ± 5mN.m−1. In the following,
measurement point is located at a distance of 90 ±5 mm from
each wave maker, corresponding to the position (xv, yv).
Figure 3 a) shows a top view of the tank for an angle α12

equal to 60 deg, for experiments using the laser Doppler
vibrometer placed about 64 cm above the liquid surface. As a
remark, during preliminary experiments, local measurements
were performed using a capacitive wave probe, providing
very similar results. Attenuation measurements providing
values of the viscous damping coefficients δi are presented in
Appendix.

The second method, Diffusing Light Photography
(DLP) [19], consists in the reconstruction of the 3D free
surface from the measurement of the transmitted light through
a liquid diffusing the light. Small amount of micrometric
particles are added to the liquid (4.5mL of Intralipids 20%
Fresenius Kabi TMin 1L of distilled water). We measure a

density ratio with water ρsol intra/ρwater = 1.001 and a
kinematic viscosity ν = 1.24 10−6 m2.s−1. The surface ten-
sion will be deduced from the measurements. As displayed in
Fig 3 c) a diffuse LED light source of 200×200 mm2 (Phlox)
provides a homogeneous lighting below the transparent tank.
Transmitted light is recorded on an observation area S of
103 × 94mm2, with a fast camera (PCO Edge, scientific
CMOS) located above the tank, and with focus made on the
surface (frame rate 200 Hz). Knowing that the transmitted
intensity is related to the local height of liquid, it is possible
with a suitable calibration to reconstruct the wave-field in
space and time. More details about DLP are available in an
experimental work on capillary [24], where a similar set up
was used. Spatio-temporal dynamics of free-surface elevation
can be thus extracted with a good sensitivity even for steep
deformation. This method has an accuracy of order 10µm,
due to uncertainties in the calibration process, and is thus
less precise than the laser Doppler vibrometry. Moreover
surfactants present for stabilisation purpose in commercial
solutions of intralipids increase slightly wave dissipation (See
Appendix). Therefore for quantitative measurements of wave
amplitudes, laser Doppler vibrometry will be preferred in
the following. But we have checked that the all phenomena
observed with the vibrometer are reproduced with the DLP
method with less accuracy and slightly different physical
constants. DLP will thus succeed to characterize spatial
properties of the wave-field and to display mechanisms of
three-wave resonant interactions.

Finally a data acquisition card (NI-USB 6212) controlled
through Matlab TM, sends programmed signals to the elec-
tromagnetic shakers and record analog signals from the laser
Doppler vibrometer and from the two accelerometers (sam-
pling frequency of 10 kHz). As optical properties of liquid
are different for the two methods (opaque for the vibrome-
try and light diffusing for the DLP), local and spatio-temporal
measurements are taken separately on dedicated experiments.
For the local measurements, recordings are taken during 170 s,
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in which waves are generated for 150 s including transient,
stationary and decaying regimes. Each measurement is re-
peated 12 times to ensure a statistical averaging. Then for
spatio-temporal measurements, due to the larger amount of
data, the wave reconstruction is performed usually on a du-
ration of 20.5 s, in stationary regime. Throughout the text,
the mother wave amplitudes a1 and a2 measured with the vi-
brometer (wave amplitudes are obtained by bandpass filtering
around f1 and f2, see IV D) will be attributed to the spatio-
temporal measurement as forcing parameters, which have the
same values of forcing amplitude imposed to the electromag-
netic shaker. Using this scale, the two kinds of measurements
can be compared with a parameter corresponding to properties
of the wave-field.

IV. EXPERIMENTAL STUDY

We first investigate three-wave interactions, by setting ex-
perimentally the conditions imposed by the resonance condi-
tion and the dispersion relation. Here we report the results for
f1 = 15 and f2 = 18 Hz, imposing the angle α12 r = 54
deg from Eq. 5, between the two wave-trains. Appearance
of a third wave at the frequency f3 = f1 + f2 = 33Hz is
thus expected. The two wave-trains are generated by the si-
nusoidal motion of each paddle. The angle between the two
paddles is set at 180 − 54 = 126 deg with an experimental
accuracy estimated to be ±2 deg. Examples of the wave-field
obtained with DLP measurements, in the transient and the sta-
tionary regimes, are displayed in Fig. 4. In the interaction
zone between the two mother waves, a modulated wave-field
is observed, with crests and troughs in the surface height dis-
tribution, corresponding mainly to the linear superposition of
the two mother waves. To detect the presence of the daughter
wave, performing a Fourier transform analysis is necessary.
From DLP measurements, spatial homogeneity can be also
estimated by computing the ratio between the spatial standard
deviation of wave amplitude and the spatial average wave am-
plitude and typical values of 10% are found. The control pa-
rameters will be the amplitudes of mother waves a1 and a2.

A. Power spectra of wave elevation

We detect the presence of the daughter wave by computing
the local power spectrum Pη(ω) of wave height η(t, xv, yv),
using the vibrometer. Pη is defined as the square modulus of
the Fourier transform of η and is computed using the pwelch
function with Matlab TM. A typical spectrum for an interme-
diary amplitudes among the tested one is shown in Fig. 5 a).
Peaks corresponding to the mother waves are clearly visible at
frequency f1 and f2. An additional peak of smaller amplitude
is present at the frequency f3 = f1 + f2, clearly demonstrat-
ing the existence of a mode at f3. Note here that the ampli-
tude of the daughter wave at f3 is of the same order of mag-
nitude as the amplitudes of the two harmonics 2f1 and 2f2.
These harmonics are generated by non-linearity in the gener-
ation by the wave makers (typical mother wave steepnesses:
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FIG. 4. (color online) Examples of wave-field reconstruction ob-
tained with the DLP technique, for f1 = 15 Hz, f2 = 18 Hz and
α12 = 54 deg: a) in the transient and b) in the stationary regime, with
a colorscale in mm (total height of fluid in the tank), with a1 = 130
and a2 = 132 µm (high forcing). The position of the laser spot
for vibrometer measurements is indicated by the black cross symbol
located at xv = 54.6mm et yv = 43.3 mm.

approximately (0.01 < ki ai < 0.1). A peak of smaller am-
plitude (not depicted) is also observed at f = f2 − f1 =
3Hz. Although its generation is also related to a three-wave
mechanism, the corresponding wave-length (around 167mm)
is too close to the tank dimensions and we choose to fo-
cus on the triad, which is transferring energy at high fre-
quency. Moreover especially when the forcing amplitude is
high enough, higher order resonant triads are also observable
in the spectrum, like: (f1, 2f1, 3f1), (f1, f1 + f2, 2f1 + f2),
(f2, 2f1, 2f1+f2),(f2, f1+f2, f1+2f2), (f1, 2f2, f1+2f2)
and (f2, 2f2, 3f2), which can be seen in Fig. 5 a). At high
forcing amplitude, spectral peaks become wider, due to non-
linear broadening. Therefore at high enough forcing the con-
sidered triad cannot be taken isolated and we expect a depar-
ture from the theoretical considerations of Sect. II B.

Using DLP method, we compute also spatio-temporal
power spectra Sη(ω, kx, ky) by performing a temporal 2D
spatial Fourier transform and a temporal Fourier transform
on the wave-field η(x, y, t). The spectrum Sη(ω, k) with
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FIG. 5. (color online) a) Local Power Spectrum Pη(ω) for f1 = 15,
f2 = 18 Hz and α12 = 54 deg. There, a1 = 130 and a2 = 132
µm (high forcing). b) Spatio-temporal spectrum of wave elevation
Sη(ω, k). White dashed line: linear theoretical dispersion relation
for σfit = 55mN/m. Colorscale corresponds to log10(Sη(ω, k))
with Sη in mm3.s, with a1 = 55 and a2 = 56 µm (low forcing).

k =
√
kx

2 + ky
2 is averaged over the different directions

and is displayed in Fig. 5 b), as a function of the inverse of
the wavelength λ and of the frequency f . The spatial resolu-
tion of the spectrum is equal to 2π δλ−1 = δk ≈ 30.5m−1.
Peaks of the spectrum appear as high amplitude spots. As
seen previously, spectrum contains peaks at the frequencies
of the mother waves f1 and f2, the harmonics of the mother
waves 2f1 and 2f2 (hardly visible) and the daughter wave
f3 = f1 + f2. Small amplitude waves are expected to fol-
low the linear gravity-capillary dispersion relation. The ex-
perimental dispersion relation can thus be accurately fitted by
the linear dispersion relation where the surface tension σ is the
only free parameter in Eq. 3. We find here σfit = 55mN/m,
but for other experiments with solution of intralipids σ can
be significantly lower, up to 45mN/m. We observe also a
broadening of the relation dispersion in λ−1, evaluated using a
gaussian adjustment of the peaks, as 2π δλ̃−1 = δk̃ ≈ 70m−1

around the fit. This broadening is due to the finite field of view
of the camera, to the weak non-linearity and to the dissipation
of the waves.

B. Verification of the spatial resonance condition

Resonance implies that both temporal and spatial con-
ditions f3 = f1 + f2 and k3 = k1 + k2 are satisfied
simultaneously. Fig. 6 shows separately the spatio-temporal
spectra Sη(ωi, kx, ky) for the frequency f1, f2 and f3. In
Fig. 6 a) and b), maximum of each spectrum is observed in
the direction of propagation of the wave 1 or 2 at a position
from the center equal to ki =‖ ki ‖ given by the linear
dispersion relation. But wave energy is also detected with
wavenumber k1 and k2 in other directions than the initial
propagation one. Since measurements are performed during
the stationary regime, this is due to the multiple reflections
on the border of the tank. Despite the multidirectionality
observed for the mother waves, for the daughter wave at f3 in
Fig. 6 c), a maximum is clearly detected at k = k3 and the
corresponding wavevector k3 is close to the vectorial sum of
k1 and k2.

To quantify the verification of the spatial resonance condition,
a systematic study was performed for growing mother wave
amplitudes. In Fig. 7 for increasing a1a2, we test the accor-
dance of k3 with the dispersion relation and on the direction
θ made by k3 with the horizontal axis. As the spectra have
a finite resolution δk = 30.5m−1, the modulus of k is mea-
sured with an accuracy equal to ±δk and its direction with an
accuracy equal to±δθ = δk/k3 = 2.0 deg. The resonant con-
dition is thus well verified for low values of the product a1a2.
When this product becomes larger than 2 10−8 m2 a signifi-
cant departure is observed, probably due to higher non-linear
effects. The angle θ is also decreasing with the amplitude of
the two mother waves. Nevertheless spatio-temporal measure-
ments show that resonance conditions are well verified in time
and space for a significant range of mother-wave amplitudes.

C. Spatial behavior of mother and daughter waves

Using the spatio-temporal DLP measurements, we aim to
access to the spatial behavior of each component in the triad.
Indeed according to Eq. 10, the daughter wave is expected
to grow with the distance and thus its amplitude depends on
the spatial coordinate. Moreover as the system is finite and
presents inhomogeneity due to reflections and viscous dissi-
pation, the spatial evolution of the waves has to be studied. To
do this, Fourier power spectrum is applied only in time to the
wave-field η(x, y, t), to obtain a spectrum Sη(x, y, f), which
is here a function of spatial coordinates and frequency. By
taking the spectra for the frequencies fi in the triad, we can
define wave-modes ãi(x, y) depicting the spatial distribution
of each wave of frequency fi in the triad. To express ãi as
an amplitude, they are obtained by integration of the spectrum



8

 λx
−1 (mm −1 ) 

 λ
y−1

  (
m

m
 −

1  ) 
 

 

 

−0.2 −0.1 0 0.1 0.2−0.2

−0.1

0

0.1

0.2

−4

−3

−2

−1

f1=15 Hz

k1

a)

 λx
−1 (mm −1 ) 

 λ
y−1

  (
m

m
 −

1  ) 
 

 

 

−0.2 −0.1 0 0.1 0.2−0.2

−0.1

0

0.1

0.2

−4

−3

−2

−1

f2=18 Hz
b)

k2

 λx
−1 (mm −1 ) 

 λ
y−1

  (
m

m
 −

1  ) 
 

 

 

−0.2 −0.1 0 0.1 0.2−0.2

−0.1

0

0.1

0.2

−4

−3

−2

−1

f3=33 Hz

k1+k2
k3

k1 k2

c)
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mother wave amplitudes. a) in norm and b) in direction, when α12 =
54 deg. In a) the value of k3 given by the linear dispersion relation
is represented by a black line. The black dashed line provides the
acceptable bounds due to the finite resolution δk = 30.5 m−1 of the
spectra. In b) θ is the angle between the horizontal axis of Fig. 6
c) and k3. The black dashed lines indicate the angular accuracy δθ
around the average orientation 〈θ〉 of k1+k2. The product a1a2 has
been measured with the laser vibrometer, in equivalent experimental
conditions.

around fi, ãi(x, y) =
√
2
(∫ fi+δf

fi−δf Sη(x, y, fi) df
)1/2

with
i = 1, 2, 3 and δf = 0.2Hz. Note by definition, that ãi is
averaged with time. Spatial wave-modes ã1 , ã2 and ã3(x, y)
are plotted respectively in Fig. 8 a), b) and c). Due to the
circular boundary of the tank producing a stationary compo-
nent on the wave-field, on each graph, we observe a signifi-
cant modulation at the wavelength λi/2 for the frequency fi,
because the power spectrum is a quadratic operation. Nev-
ertheless ãi provide a useful evaluation of local wave ampli-
tudes. We observe that the inhomogeneity of the mother wave
modes are significant. Nonetheless in agreement with the re-
sults from the spatial spectra, the wave 3 is found to propagate
in a direction close to Oy and its amplitude is important in the
middle of the crossing region between the two mother wave-
trains. Then by plotting the amplitudes ãi as a function of
the distance d from the bottom of the image, Fig. 9 a), we
observe a decay of ã1 and ã2 due to viscous dissipation and
non-linear pumping by the wave 3. ã3 is indeed found to grow
slightly. This behavior is qualitatively described with Eq. 10,
by taking ξ ' d. In this equation a1a2 is taken as the aver-
age value of ã1ã2 for d < 30mm. We assume that sinφ = 1
and we take vg3 = 0.316m.s−1, δ3 = 4.83 s−1 and so that
γ3 is taken equal to 1.30 104 m−1 (see Eq. 8 with the physi-
cal properties of the Intralipid solution). Then the origin O at
ξ = 0 is determined by matching ã3 for d = 0, which gives
d0 = −23mm. Although ã3 is not so small for this measure-
ment and that the ã1 and ã2 are varying in space, the model
depicts roughly the a3 evolution with the good order of mag-
nitude for d < 50mm. At higher distance, inhomogeneity
seems too important to make a quantitative comparison.

These results are confirmed for several measurements with
different forcing amplitudes by plotting the rescaled ampli-
tude ã3/(ã1ã2) in Fig. 9 b). We observe that the fast spatial
modulations are not coherent from a measurement to another,
although experiments have been performed successively in
identical conditions. We suppose that the stationary pattern of
standing waves depends in the capillary regime on the menis-
cus shape on the border of the circular tank, which is known
to be subjected to hysteresis. Except at lowest mother wave
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FIG. 8. a) ã1(x, y) providing the spatial distribution of wave-mode at the frequency f1, when α12 = 54 deg. The black cross indicates the
corresponding position of the laser beam for the measurements performed with the vibrometer. Colorscale ãi in mm. Here a1 = 104 and
a2 = 110 µm. b) ã2(x, y) spatial mode at f2. c) ã3(x, y) spatial mode at f3.

amplitudes, where signal to noise ratio is too important and
at high amplitude, the rescaled evolution of ã3 is in quali-
tative agreement with the model despite the approximations,
which validates the resonant interaction theory. Moreover we
demonstrate that for capillary-gravity waves, neither the linear
growth solution (Eq. 12) nor the saturated solution by viscous
dissipation (Eq. 13) describes the observations and thus the
more complete solution (Eq. 10) has to be used, which is tak-
ing into account the spatial growth of a3 with ξ.

D. Amplitudes and phase locking in stationary regime

After verifying the resonance conditions and showing that
Eq. 10 describes the spatial behavior of the daughter wave
in stationary regime, we study now its temporal dynamics in
more accurate measurements using the laser Doppler vibrom-
eter. 12 realizations of the same experiment and for 12 in-
creasing mother wave amplitudes have been performed. Con-
cerning the experimental protocol, at t = 10 s, excitation is
started for 150 s and is then stopped at t = 160 s, whereas
wave heights are recorded during the total duration of the ex-
periment lasting 170 s.
From the measurements, we examine the evolution of the am-
plitudes and the phases of the different components of the triad
in the stationary regime at the position (xv, yv). To do so,
the vibrometer signal is filtered around each considered fre-
quency fi : the filter is of Butterworth type, of order 2 and
with a passband of 2∆f (∆f = 0.5 Hz). Resulting signals
are then integrated over time, to transform vertical interface
velocity into wave amplitudes. Then a Hilbert transformation
is applied to the signal in order to extract separately the in-
stantaneous wave amplitude ai(t) and the instantaneous phase
ψi = ki ·xv−ωi t+φi of the different waves at the laser beam
position xv .
Looking at the amplitudes ai averaged on 12 realizations
in Fig. 10 a), we can see that after a transient and a small
overshoot, the amplitudes stabilize to a stationary value. At
t = 160 s, when the excitation is stopped, the amplitudes

return to zero. The growing and decaying transient regimes
involve shaker dynamic response, wave propagation, viscous
dissipation, and non-linear wave interaction. Due to the lack
of temporal resolution resulting from the filtering operation,
transients cannot be used to evaluate the growth coefficient γ3
of the daughter wave. We notice also that the amplitude of the
daughter wave, around 20 µm, is smaller than the amplitudes
of the mother waves, around 130 µm (a3 <<

√
a1 a2).

Concerning the phase, Fig. 10 b) displays sinφ as a function
of t. If the resonant conditions of Eq. 4 are verified, by com-
putingψ1+ψ2−ψ3, we obtain the total phase φ = φ1+φ2−φ3
and so the sinφ term involved in Eq. 6. During the transient
regimes, phases φi are not related and sinφ fluctuations are
fast. Then once stationary regime is reached, sinφ evolves
slowly and stabilizes to 1. Therefore there is a constant re-
lation between the phases in the triad, i.e. a phase locking
around φ = π/2 as expected theoretically to have a stationary
phase behavior (see Eq. 7). This constitutes a strong argument
proving that the wave 3 is created by the resonant interaction
mechanism.
The influence of increasing the amplitudes of the two mother
waves is presented in Fig. 10 c) and d) for which both ampli-
tudes ai and sinφ are averaged first over time in the station-
ary regime (between t = 60 and 140 s) and then on the 12
consecutive identical experimental realizations. In these ex-
perimental conditions, Fig. 10 c) shows the mean value and
the standard deviation of sinφ versus a1a2. Except at the
lowest amplitudes, standard deviation of sinφ is quite small
(below 0.02), showing that a phase locking occurs. But we
observe that the phase locking value differs at small ampli-
tude from the expected value of 1. Fig. 10 d) presents the evo-
lution of a3δ3/(K(ξ) sinφ) versus a1a2. As expected from
Eqs. 10 and 11, we found a proportional behavior between the
rescaled a3 and a1a2, at least for not too high amplitudes.
Following Eq. 10, we estimate the interaction coefficient γ3
for the daughter wave by computing the slope of the linear
fit of a3δ3/(K(ξ) sinφ). To take into account the growth of
the daughter wave on a distance ξ between the beginning of
the wave-train and the laser spot, the coefficient K(ξ), has to
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FIG. 9. (color online) a) Evolution of wave amplitudes ãi (averaged
between 49 < x < 55mm) along the propagation direction of the
wave 3 as a function of the distance d from the bottom of the image.
The behavior of ã3 is compared to the model (black solid line) given
by Eq. 10 with ξ ' d. The vertical black dashed line gives the posi-
tion yv of the laser beam for vibrometer measurements. b) Rescaled
amplitude of ã3/(ã1ã2) as a function of the distance d for different
measurements (6.5 10−9 < a1a2 < 1.7 10−8 m2). We notice that
the spatial amplitude modulations are not in phase in the different
measurements. The average evolution of ã3 on the measurements,
green (light gray) line, is compared with the model given by Eq. 10,
black solid line. The linear limit for negligible dissipation (black
dashed line from Eq. 12) and the saturated value (light-gray dotted
line from Eq. 13) are also depicted.

be evaluated. For these experiments the distance ξ is roughly
30mm, leading to K(ξ) = 0.33. The slope of the linear fit
in Fig. 10 d) is 4.85 103 m−1.s−1, and gives thus an esti-
mate of γ3. We obtain thus an experimental estimation of the
non-linear interaction coefficient γ3exp = 1.46 104 m−1.s−1,
which is 20% more than the theoretical value γ3 = 1.24 104

m−1.s−1. Note that repeating the experiments with another
triad (16, 23, 39) Hz leads to an estimation of the coefficient
γ3,exp = 1.22 104 m−1s−1, which is 13% less than the theo-
retical value γ3,th = 1.41 104 m−1s−1.
These measurements validate thus the generation of a daugh-
ter wave from the interaction between two mother waves, for
capillary-gravity waves in a closed tank. It is important to
keep in mind that the wave-field presents inhomogeneity, due
to two main reasons: first, the presence of a significant stand-
ing wave part, in addition to the main propagative part. Sec-

ondly the viscous dissipation decreases significantly the am-
plitudes of the mother waves as they propagate away from
the wave makers. Moreover the frequencies f1, f2 and f3 of
the triad, are involved in other non-linear mechanisms. Nev-
ertheless, the main features given by the resonant interaction
theory are recovered in this experiment. We observe that the
daughter wave verifies the resonant conditions in frequency
and wave number. Furthermore, the total phase φ is locked
to a value close to π/2. The non-linear interaction coefficient
experimentally estimated is finally quite close to the theoret-
ical one, considering that the experimental conditions are not
strictly conform to the framework of the theory.

V. CONCLUSIONS AND DISCUSSION

We report an experimental study on three-wave interactions
of capillary-gravity waves in a closed tank. We showed that
the interaction between two mother wave trains at frequencies
f1 and f2 creates a daughter wave at f3 = f1+f2. For mother
waves crossing at the resonant angle, we experimentally val-
idate the three-wave resonant mechanism. By means of a
spatio-temporal measurements, we verify that the spatial reso-
nance condition is fulfilled. We also observe a phase locking,
at φ = π/2, between the different waves of the triad as theo-
retically expected . In the stationary regime, we measure the
growth rate of the daughter wave amplitude a3, which is found
to be proportional to γ3 a1a2, with a1 and a2 the mother wave
amplitudes. Our quantitative estimation of the non-linear in-
teraction coefficient γ3 gives the correct order of magnitude
with respect to the theoretical value, within an accuracy of
less than 20%. This extensive study has been performed for
two different triads (15, 18, 33) Hz or (16, 23, 39) Hz (the
latter is not shown here). Similar results are found. This con-
firms that the features of three-wave interaction reported here
can be generalized to different capillary-gravity triads within
a frequency range of approximatively 10 < f < 50Hz.
Several phenomena could be addressed to explain the slight
departures between experimental and theoretical values: i)
higher-order interactions at high forcing amplitude, ii) wave
reflections on the boundary of the tank producing standing
waves, that reduce homogeneity of the wave-field where the
daughter wave is studied, iii) issue to localize the beginning of
the daughter wave in local measurements, and iv) finite width
of the wave-trains that could also modify the derivation of in-
teraction coefficients [41].
The model used here, (Eqs. 6, 7 and 10), involving viscous
dissipation as a perturbation [2, 29, 33], describes appropri-
ately our results in the stationary regime. The characteris-
tic non-linear time τnl for the growth of a3 can be approxi-
mated as 1/τnl = (γ3

√
a1a2). For the triad (15, 18, 33)Hz,

1/τnl ≈ 1.24 s−1 taking a1a2 ≈ 1.10−8 m2 (Fig.10 d), lead-
ing to τnl ≈ 0.81 s. The dissipative time is evaluated as
τd = 1/δ3 = 0.23 s. For capillary waves, the dissipation is
thus always too strong to be neglected and it is surprising that
inviscid theories provide correct values for the interaction co-
efficients. Consequently a theoretical effort describing three-
wave resonant interactions from Navier-Stokes equations for
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surface waves, would be of prime interest.
Note that such an extensive experimental study of three-wave
interaction for gravity-capillary waves on the surface of a fluid
has never been tested, although this process transfers energy
at small scale in wave turbulence. Indeed, previous works us-
ing only collinear wave-trains, investigated the degenerated
case of Wilton ripples [29, 30] or the subharmonic generation
where one wave at high frequency produces two waves at a
lower frequency [31–33]. Here, we emphasized that, for a
given couple of mother waves frequencies, the resonance con-
ditions impose, theoretically from Eq. 5, the value of the res-
onant angle between the two mother waves. When the angle
is experimentally fixed to the resonant angle, we have shown
here that three-wave interactions are correctly described by
the resonant interaction theory. As these interactions are the
elemental mechanism of capillary wave turbulence, this study
seems to show that resonant interactions insure energy trans-
fer through the scales. The average flux ε3 transferred to the
daughter wave by unit of area and density, can be estimated
from the energy the wave 3 [42]. After spatial and tempo-
ral averaging, we find 〈ε3〉 ≈ 2 10−7m3.s−3, which is close
to values obtained in capillary wave turbulence experiments
in water, when energy flux is evaluated through the dissipated
power [26]. Nevertheless it is important to evaluate and under-

stand the relative contribution of three-wave quasi-resonances
[36] and non-resonant interactions [6] in front the resonant
interactions for gravity-capillary wave experiments in labora-
tory.
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APPENDIX : ATTENUATION OF THE WAVES DUE TO
VISCOUS DAMPING

In our experiments, the amplitude of a daughter wave is due to
a balance between viscous attenuation and three-wave interac-
tions. In order to experimentally determine the viscous dissi-
pation or attenuation coefficients δi, we have performed ex-
periments with only one wave maker generating a monochro-
matic wave, with f1, f2 and f3 generated separately. The am-
plitude of the wave has been recorded every centimeter with
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the laser vibrometer put on a linear translation stage. A beach
with a slope around 45 deg and lateral walls have been placed
in the tank in order to avoid reflections of the waves when
encountering the solid curved walls of the tank.

The evolution of amplitude is expected to decrease expo-
nentially with the distance from the wave maker. For a given
frequency, the attenuation length li can be estimated from
the decaying exponent of an exponential fit performed on
the experimental amplitudes as shown in Fig. 11, for a fre-
quency equal to 33Hz. Then the coefficients δi are simply
computed by δi = vgi/li. The group velocities are calcu-
lated using vgi = ∂ωi/∂ki for deep water dispersion relation,

ωi =
√
gki +

σ
ρ k

3
i . This leads to:

∂ωi/∂ki =
1

2

(
g +

3σ

ρ
k2i

)(
gki +

σ

ρ
k3i

)−1/2

(A.14)

Despite the experimental care, in preparing the solution of
TiO2, the dissipation exponents are found after one hour,
well described by the inextensible free-surface model due to
the presence of insoluble surfactants [25, 43–45]. The values
of the viscous dissipation coefficients are thus computed us-
ing the formula δimodel =

√
2
√
νωiki/4. The values of the

norms of the wavevectors ki (found with the graphical reso-
lution of Fig. 1 b) with σ = 60mN/m), the phase and group
velocities vpi and vgi, the attenuation parameters δimodel, li
and δi are reported in Tables II and III. Note that the mea-
sured coefficients are close to the value of δimodel (maximum

relative error around equal to 7%).
Note as previously mentioned, that gravity-capillary waves

are sensitive to the contamination of the surface that is an
unavoidable effect. In order to check if contaminants play
a significant role in the present experimental conditions, we
have performed for an arbitrary angle between the two wave
makers, a complete series of experiments with a home-build
plastic cover and the same series another day without the plas-
tic cover. Results appear to be comparable with and without
cover, excepted during the first hour.

ki (m−1) vpi (m. s−1) vgi (m. s−1)
f1 = 15 Hz 428 0.220 0.227
f2 = 18 Hz 507 0.223 0.248
f3 = 33 Hz 834 0.249 0.326

f1 = 16 Hz 455 0.221 0.234
f2 = 23 Hz 626 0.231 0.278
f3 = 39 Hz 946 0.259 0.349

TABLE II. Norms of the wavevectors, phase and group velocities.
The different values are calculated with σ = 60 mN/m and ρ =
1000 kg.m−3.

δimodel (s−1) li (m) δi (s−1)
f1 = 15 Hz 1.49 0.162 1.40
f2 = 18 Hz 1.93 0.128 1.94
f3 = 33 Hz 4.31 0.080 4.07

f1 = 16 Hz 1.63 0.122 1.92
f2 = 23 Hz 2.70 0.103 2.70
f3 = 39 Hz 5.31 0.061 5.71

TABLE III. Viscous damping coefficients (viscous model :
δimodel =

√
2
√
νωiki/4), experimentally measured attenuation

lengths and corresponding deduced viscous damping coefficients.
The different values are calculated with σ = 60mN/m.

Finally viscous damping coefficient have been also mea-
sured for the solution of Intralipids using the DLP method.
Spatial decay of sinusoidal wave-trains are found compat-
ible with the inextensible free-surface model, δimodel =√
2
√
νωiki/4. Compared to the solution of TiO2, this so-

lution has a lower surface tension γ = 55 mN.m−1 and
a slightly higher viscosity ν = 1.24 m.s−2. We obtain
thus for example for f3 = 33Hz, vg3 = 0.316m.s−1 and
δ3 = 4.83 s−1. Therefore both liquids used in this experimen-
tal study have analogous physical properties and we observe
the same behavior for the three-wave resonance mechanism.
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