Use of Si-Phytoliths in depollution of mining areas in the Cerrado-Caatinga region, MG, Brazil
Heloiza Márcia Fernandes-Horn, Regynaldo Arruda Sampaio, Adolf Heinrich Horn, Ely Sandra Alves de Oliveira, Igo Fernando Lepsch, Essaïd Bilal

To cite this version:

HAL Id: hal-01284584
https://hal.archives-ouvertes.fr/hal-01284584
Submitted on 22 Mar 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
USE OF SI-PHYTOLITHS IN DEPOLLUTION OF MINING AREAS IN THE CERRADO-CAATINGA REGION, MG, BRAZIL.

Heloíza Márcia Fernandes-Horn¹, Regynaldo Arruda Sampaio¹, Adolf Heinrich Horn², Ely Sandra Alves de Oliveira¹, Igo Fernando Lepsch¹, Essaid Bilal³

¹ Federal University of Minas Gerais, IGC, 31630-900 Montes Claros - MG, MG, A. Universitária, 1000, Brazil
² Federal University of Minas Gerais, IGC, 31.270-90 1 Belo Horizonte - MG, Av. Antônio Carlos, 6627, Brazil
³ Ecole des Mines de St. Etienne, Spin Division, GSE Department, CNRS UMR 5600, 42023 Saint Etienne Cedex 2, 158, cours Fauriel, CS 62362, France

Abstract
Treating of metal contaminated areas became a very important problem with increasing industrial and agricultural activities. Many of the used methods are very expensive, need intensive human interaction or have a very negative influence on the cleaned regions. The use of Si-Phytoliths is a simple, low cost and a very effective way to obtain good results in low contaminated or as the final process in highly contaminated places. The method is based on the fact that plants produce Si-Phytoliths and trap significant quantities of heavy metals in these amorphous to microcrystalline structures. The solubility of the Si-Phytoliths under tropical soil conditions is lower than that of the heavy elements brought directly in the soil by wash-fall out, or by degrading of organic parts of the plants on the surface. In this way, it is possible to retain liberation to the environment from short to long periods and attend environmental laws and norms. Initial tests with different plants like *Ricinus communis* L., *Andropogon arundinaceus* Willd., *Zea Mays* L., *Brachiaria* sp. L. and *Saccharum officinarum* L., planted on substrates with metal concentrations (Al, Fe, Mn, Ti, Zn, Cu, Pb, Cd, Ba, Hg, S) have shown that the plants absorbed elements and quantities in the different parts like leaves, roots, stems, flowers and fruits. This allows a selective use due to contamination varieties and a possible economic use of parts of the plants and an effective planning of the decontamination conditions.

Keywords: Si-Phytoliths, Soil contamination, Heavy metals, Decontamination, Mitigation,

1. INTRODUCTION

1.1 Contamination process

With the increasing population, the necessity for more raw materials and manufacturing products increases significantly.

With this increasing activities also the intensity and the amount of introduction of pollutants increases.

During the history a lot of environment disasters were described and also an increase of health problems due to the changes of environmental quality.

Mining, metallurgy or industrial process produces waste material which is able to contaminate surface areas and need to be disposed. The areas around these sites often suffer with high metal contents.

1.2 Decontamination processes

A lot of decontamination methods are known. A lot of them are very expensive, other are very aggressive or need a longtime accompaniment (Table 1). The conservative methods are very aggressive, very expensive or need a big amount of human intervention and monitoring. The effects are changes in soil structure and composition, the introduction of strange compounds or plants. Often it is necessary to take of the biological material and deposite it on special places.

<table>
<thead>
<tr>
<th>Method</th>
<th>Impact</th>
<th>Time</th>
<th>Contam.Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing of soil</td>
<td>Very strong</td>
<td>Short</td>
<td>Inorg./org., high</td>
</tr>
<tr>
<td>Use of biomass</td>
<td>Low</td>
<td>Intermediate</td>
<td>Inorg./org.</td>
</tr>
<tr>
<td>Using of additives</td>
<td>Strong to very strong</td>
<td>Short to long</td>
<td>Inorg./org.</td>
</tr>
<tr>
<td>Use of phytoliths</td>
<td>Very low</td>
<td>Intermediate to long</td>
<td>Inorg./org. Medium to low</td>
</tr>
</tbody>
</table>

The use of Si-Phytoliths seems to be one of the less aggressive, low-cost and independent methods (Table 2).

Different to the classic methods, the use of Si-Phytoliths does not interfere in soils and it is possible to use local plants.

After seeding no more intervention is necessary only the heavy metal content of the soil needs to be verified time in time.
Table 2: Medium quantities of phytoliths in the used plants.

<table>
<thead>
<tr>
<th>Part of plant</th>
<th>Localization</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaves</td>
<td>Surface, inside /between cells</td>
<td>500 ppm</td>
</tr>
<tr>
<td>Stem/Trunk</td>
<td>Inside/between cells</td>
<td>300 ppm</td>
</tr>
<tr>
<td>Fruits</td>
<td>Inside/between cells</td>
<td>200 ppm</td>
</tr>
<tr>
<td>Roots</td>
<td>Inside and between cells</td>
<td>250 ppm</td>
</tr>
<tr>
<td>External</td>
<td>Surface of roots, leaves and trunk</td>
<td>800 ppm</td>
</tr>
</tbody>
</table>

1.3 Phytoliths

Phytoliths are inorganic material like SiO$_2$, CaCO$_3$, (CaMg)CO$_3$ or other which are formed in some plants by precipitation of these materials in amorphous or microcrystalline structures. These organelles are formed in and between plant cells that give them their peculiar form. This form can be used for plant determination.

These particles are formed for different purposes like to enhance structure, to create sharp and hard tissue alimentation and probably also to trap dangerous compounds. **Figure 1** show these different forms and where they are localized.

1.4 Biomass and Phytolith production

All plants produce biomass and distribute them to the different parts. The production of biomass depends on soil, weather and other physical-chemical factor and therefore differs very between authors [5] and [17]. The biomass for millet (Pennisetum sp. Schum.) is informed between 9000 and 15.000 kg ha$^{-1}$ [13], [15], for Amaranthus spp. L. 2500 to 3000 kg ha$^{-1}$ [2] and for some grasses from 4000 to 6000 kg ha$^{-1}$ [8].

All plants contain significant quantities of some heavy elements. The problem is that after decomposition these quantities return to the soil. The phytolith concentration varies from every plant to plant. The grass used here have around 9-30 kg ha$^{-1}$ and the other plants around 35-65 kg ha$^{-1}$.

Figure 2: SiO$_2$-Structure and possible of metal ions [1], [7]

The relative high heavy metal content in the Si-Phytoliths and their low solubility is the basic concept of the use in long-term decontamination of polluted areas like deposits, well regions, mining and industrial sites.

Figure 2 shows the possibilities of metal trapping in the organic amorphous SiO$_2$-structures.

Figure 3: Solubility of the different SiO$_2$-modifications in relation to the pH.

This phytoliths can trap from 1 ppm (Hg) up to 0.05% (Fe). This is an important amount for yearly plants. Due to the solubility of SiO$_2$ (**Figure 3**) this amount returns very slowly to the soil, reducing in this way its heavy metal concentration [4], [6], [9].

The next **Table 3** shows the heavy metal maximum trapping in SiO$_2$-modifications. The biological opal due to its structural features, its high content of water and OH and it open
organization can capture up to 200 g kg\(^{-1}\) of metal ions like Al, Ca, Fe, K, Na, Cu, Zn, Ti, Zn and Hg. These elements are fixed in the structure and closed between the SiO\(_2\) structures.

Table 3: Principal properties and trapping capacities of crystalline quartz, geological- and biological opal [11], [10]. for Cerrado plants; **analyses of fifty opal specimen.**

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Density</th>
<th>Hardness</th>
<th>Impurities g kg(^{-1})</th>
<th>H(_2)O g kg(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>2.65</td>
<td>7.0</td>
<td>Traces</td>
<td>0</td>
</tr>
<tr>
<td>Plant opal</td>
<td>1.5-2.3</td>
<td>5.5-6.5</td>
<td>50-150*</td>
<td>40-90</td>
</tr>
<tr>
<td>Geol. Opal</td>
<td>1.2-2.9</td>
<td>5.5-6.5</td>
<td>≤200**</td>
<td>2-10</td>
</tr>
</tbody>
</table>

1.5 Biomass and Phytolith cycles

During growing all plant produce biomass distributed between its part and also different amounts of phytoliths. During the decomposition this material returns to soil were the biological part is reintegrated by decomposition, liberating the extracted metals. The phytoliths stay without alteration for some thousand years and therefore liberate metals very slowly (Figure 4). The next Table 3 shows the heavy metal maximum trapping in SiO\(_2\)-modifications. The biological opal due to its structural features, its high content of water and OH\(^-\) and it open organization can capture up to 200 g kg\(^{-1}\) of metal ions like Al, Ca, Fe, K, Na, Cu, Zn, Ti, Zn and Hg. These elements are fixed in the structure and closed between the SiO\(_2\) structures.

Figure 4: Scheme of principle remediation circulation of phytoliths, biomass and elements in the biogenic and geological cycle.

2. MATERIALS AND METHODS

2.1 Soil

We used collected soil from northern part of Minas Gerais. This soil was mixedure with different concentrations of heavy metals and put in 10l bags (Table 4).

2.2 Used plants

For this initial tests to obtain information of heavy metal uptakes several one year plants like *Ricinus communis* L., *Andropogon arundinaceus* Willd., *Zea Mays* L., *Brachiaria sp.* L. and *Saccharum officinarum* L. were used (Figure 5).

Figure 5: Example of planted corn like used in the remediation tests.

2.3 Field tests

2.4 Preparation of the samples

The plant samples were separated in its, leaves, roots, fruits and stems and then send to laboratory for drying.
2.5 Laboratory

In the laboratory the phytolith preparation and separation were done using process described by [16]. The separated phytoliths were opened by dissolving with mixtures of HNO₃/HF/HCl and the metal concentrations in the filtered solutions determined by analyses with ICP-OES and ICP-MS. Semiquantitative determinations in single phytolithe were carried out by using a microprobe with ed-analyzer. The analyses were done in comparison with national and international metal standards.

3. RESULTS AND DISCUSSION

All analyses indicate the presence of significant quantities of Al, Fe, Mn, Cu up to 10³ ppm, S, K, Ca, Cr, Zn and Pb (>10 ppm) and a lot of other trace elements near the detection limits of the employed methodologies.

Concentration of elements in phytolites from Brachiaria decumbens and Andropogon arundinaceus (falso massanbará) grown on substrate with or without sewage sludge addition. The analyses were done with ICP-OES and ICP-MS equipment. The results show significant enrichment of some interest trace elements like Cu and Zn.

Table 6: Analytical results of Brachiaria decumbens from substrates with element addition. (Analyses done by ICC-OES at NGQA-UFMG).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Fe</th>
<th>Mn</th>
<th>Cu</th>
<th>Zn</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil/Fe</td>
<td>0.05%</td>
<td>9</td>
<td>35</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Soil/Mn</td>
<td>0.04</td>
<td>12</td>
<td>33</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Soil/Zn</td>
<td>0.03</td>
<td>8</td>
<td>29</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Soil/Cu</td>
<td>0.02</td>
<td>10</td>
<td>453</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Soil/Ba</td>
<td>0.03</td>
<td>10</td>
<td>28</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>Soil/sludge</td>
<td>0.03</td>
<td>8</td>
<td>119</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Pure soil</td>
<td>0.03</td>
<td>11</td>
<td>29</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Andropogon arundinaceus (Poacea) shows a significant presence of Si, S, K, Ca, Cr and Fe(>10mgkg⁻¹). Zn and Cu were found in concentration near detection limits.

Ricinus communis show high Al, Fe, Ti and K (<500 mgkg⁻¹). Only slightly differences in element concentrations between the plants from pots with and without sewage sludge were observed.

Figure 7: Element trapping shown for the example of Al in Andropogon arundinaceus.

Figure 8: Element trapping shown for elements in Phytoliths of Ricinus communis.

4. CONCLUSION

The obtained results show that a significant amount of metal ions can be trapped in Si-Phytoliths of a variety of specific plants.

This concentration related to the biomass production show that it is possible to clean areas with considerable soluble metal contamination by using this method of planting selected species of local plants.

The relative simplicity of application and use, the employment of local plants and the long time process predestinate this method for cleaning of sensitive biotopes in endangered environments.

5. ACKNOWLEDGEMENTS

We thank CNPq, CAPES, IGC-UFMG and ICA-UFMG for financial and logistic support.

6. REFERENCES

