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Abstract
& Key message Competition-density relationships and self-
thinning are major principles in forest growth. They are
combined, describing self-thinning as a marginal case of
the competition-density relationship. Robust estimation
techniques allow parameterizing of both from national
forest inventory data even for minor species.
& Context The competition-density principle, which can
mathematically be described by the competition-density rule,
is an important principle in plant ecology. The border line
relationship is the self-thinning rule. Despite the importance of
both rules for forest management, they have been fit for few
species.
& Aims The aim of this study is to compare competition-
density rule and self-thinning rule in particular with respect
to potential density for 15 species from the Austrian National
Forest Inventory (ANFI).
& Methods The self-thinning line was estimated using
quantile regression. The competition-density rule was fit as
four- and as three-parameter model, where the fourth param-
eter was substituted (a) with a specific slope from the self-
thinning line estimated from the ANFI and (b) Reineke’s slope
(−1.605).
& Results Potential density was highest for Austrian pine and
Norway spruce, followed by silver fir and Scots pine; it was
considerably lower for European larch, stone pine and broad-
leaf species. Species-specific slopes of the self-thinning line
ranged between −1.5 and −2.0 and were significantly different

from Reineke’s slope for Norway spruce, European larch and
European beech.
& Conclusions Using robust estimation techniques, both
competition-density rule and self-thinning line can also be fit
for minor species, providing an important guide for practical
forest management.

Keywords Competition-density rule . Self-thinning rule .

Maximumbasal area . Potential density . Quantile regression .
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1 Introduction

Competition is a key process affecting plant populations and
communities (Drew and Flewelling 1977; Xue et al. 2011). Trees,
like other plants, require site resources such as light, water,
nutrients and space.As individual trees grow in size, their demand
on site resources and growing space increases. When resources
are no longer adequate to support full growth of all trees, growth
of some trees will decrease and some trees will eventually die
(Burkhart and Tomé 2012). The competition-density principle is
considered one of the most important principles in plant ecology
(Drew and Flewelling 1977). The competition-density rule (Kira
et al. 1953)mathematically describes this principle for a variety of
densities (Eq. 1). For a given dominant height or age, average tree
size decreases as density increases.

As intraspecific competition becomes fiercer, the per capita
growth rate slows until the population reaches a stable max-
imum, the carrying capacity. At the carrying capacity, the rate
of change of population density is zero because the population
is as large as possible based on the resources available. This
density-dependent, species-specific upper frontier is described
by the self-thinning rule (Reineke 1933). The rule states, that
in logarithmic scales, the relationship between plant size and
stand density is a straight line in overcrowded (fully stocked)
stands (Eq. 2). Individual stands seldom travel along their self-
thinning frontier, but are more likely to converge towards
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them during the self-thinning phase (Kira et al. 1953; Bi 2001;
Vanclay and Sands 2009).

The self-thinning line represents potential density of a
particular species across sites. The intercept of the self-
thinning line, c0, varies with species and site, and small
variations in c0 cause considerable differences in density.
The slope parameter, c1, was estimated to be −1.605 by
Reineke and varies little with species, age or site quality. There
has been much debate, whether the slope of −1.605 is a
universal constant. But recent research seems to indicate that
there are species-specific differences (e.g. Pretzsch and Biber
2005; Zeide 2010). Also, site productivity has only recently
been formally incorporated into the equation. In general, a
larger intercept has been found in stands grown on the more
productive land (Bi 2001; Weiskittel et al. 2009).

dg ¼ 1

a0⋅ha1dom⋅N þ b0⋅hb1dom
ð1Þ

ln Nð Þ ¼ c0 þ c1⋅ln dg
� � ð2Þ

dg Quadratic mean diameter
N Stem number per hectare
hdom Dominant height
a0,a1,b0,b1 Coefficients of the competition-density rule
c0,c1 Coefficients of the self-thinning line

Competition-density rule and self-thinning rule are expres-
sions of the same ecological principal. However, the
competition-density rule is more widely applicable, because it
describes the relationship between stem number, quadratic
mean diameter and dominant height for different densities.
Accordingly, Sterba (1987) showed that the coefficients of
the self-thinning rule can be obtained from the competition-
density rule (Eqs. 3 and 4). This provides a convenient way
to estimate the parameters of the self-thinning rule from
inventory data. Vice versa, the slope coefficient from
the self-thinning rule (−1.605) is used as substitute in
Eq. 1, reducing the four-parameter competition-density
rule to a model with only three parameters to be estimated
(Eq. 5). The three-parameter model is more robust than the
four-parameter model.

c1 ¼ a1
b1
−1 ð3Þ

c0 ¼ b0
a0
⋅ 2b0ð Þc1 ð4Þ

dg ¼ 1

a0⋅ha1domN þ b0⋅h
a1=−0:605
dom

ð5Þ

dg Quadratic mean diameter
N Stem number per hectare
hdom Dominant height
a0,a1,b0,b1 Coefficients of the competition-density rule
c0,c1 Coefficients of the self-thinning rule

Further, Sterba (1987) showed that maximum basal area
can be obtained from the competition-density rule by calcu-
lating basal area from stem number and quadratic mean diam-
eter in Eq. 1 and setting the first derivate to zero. The resulting
equation is given below (Eq. 6).

Gmax ¼ π

16000⋅a0⋅b0
⋅h− a1þb1ð Þ

dom ð6Þ

Gmax Maximum basal area, potential density
hdom Dominant height
a0,a1,b0,b1 Coefficients of the competition-density rule

Some differences in size-density relationships are intro-
duced by the use of stand diameter, height, volume, or bio-
mass for relating mean plant size to density. In forestry,
usually quadratic mean diameter is used due to ease of com-
putation and because it is a direct measure that does not rely on
prior relationships. Furthermore, mortality is driven by crown
width, which is more closely related to diameter than to height
and volume (Zeide 2010).

Initial works on size-density relationships dealt with even-
aged pure stands. In mixed and uneven-aged stands, the slope
of the maximum density line depends on the skewness of the
diameter distribution, which in turn is correlated with species
mixture and “unevenagedness” (Sterba and Monserud 1993;
Gül et al. 2005). As the diameter distribution becomes in-
creasingly skewed, the slope becomes more flat.

Both, competition-density rule and self-thinning rule, have
been extensively used for forest management purposes: for
stand density management diagrams and stocking guides (e.g.
Drew and Flewelling 1979; Halligan and Nyland 1999;
Spathelf and Schneider 2000), yield tables (e.g. Mesfin
1996; Eckmüllner and Vospernik 2005) and in individual tree
growth models, where the actual stem numbers are compared
to the maximum theoretical number given by the self-thinning
line (Mäkelä et al. 2000; Nagel 2009).

Despite the importance of size-density relationships, func-
tions for many species are lacking. To date, for Austria, only
functions for common beech (Fagus sylvatica L.) and Scots
pine (Pinus sylvestris L.) have been fit (Schnedl 2003); func-
tions for Norway spruce (Picea abies Karst.) (Sterba 1975;
Eckmüllner and Vospernik 2005) and Stone pine (Pinus
cembra L.) (Lick and Sterba 1991) have been developed for
specific regions.

The aims of this manuscript are (1) to compare two differ-
ent models (competition-density rule, self-thinning rule) used
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to fit size-density relationships. In particular, we want to
evaluate maximum densities obtained by the two methods
and discuss advantages and disadvantages of the models for
practical use and (2) to evaluate intercept and slope of the self-
thinning line and compare the resulting potential densities
across species, including minor species for which to date such
relationships are lacking.

2 Material and methods

2.1 Study area

Austrian forests cover an area of 4.0 mio ha, which is about
48 % of Austria’s land area. Elevation ranges from about 100
to 1800 m, thus reaching from collin to subalpine forest. They
are comprised in the Alpine as well as in the Continental
biogeographic region (European Environmental Agency
2006) and contain the forest types of the alpine coniferous
forests and the mesophysic deciduous forests sensu EEA
(European Environmental Agency 2006).

2.2 Data

For this research, we selected plots from the third, fourth, fifth,
sixth and seventh Austrian National Forest Inventory (ANFI).
The ANFI is a systematic permanent forest inventory over all
of Austria. Data were collected from 1981 to 1985, 1986 to
1990, 1992 to 1996, 2000 to 2002, and 2007 to 2009. ANFI
clusters are located at the nodes of a 3.89x3.89 km2 grid. Each
cluster contains four sample plots, which are located at the
corners of a 200×200-m square. On each sample plot, trees
with a dbh from 5 to 10.4 cm were sampled on fixed radius
plots with a radius of 2.6 m which is the critical distance for a
10.4-cm tree in angle counts with a basal area factor (BAF) of
4 m2/ha; trees with a dbh >10.4 cm were selected by angle
count sampling with BAF=4 m2/ha. We selected plots from
the ANFI which were situated entirely in the forest and were
undivided by forest roads.

Models were calculated for 15 species that were found on
more than 50 plots in pure stands. Pure stands were defined as
stands where the relevant species constituted more than 80 %
of basal area at the respective inventory. Norway spruce, with
11,881 plots, is by far the most frequent species; other impor-
tant tree species, which occur on 1091 to 101 plots (Table 1),
are European beech, Scots pine, European larch, oak, Austrian
pine, silver fir, ash, stone pine and hornbeam. Sycamore, grey
alder, birch, black locust and black alder are found on less than
100 plots. The dataset encompasses a large range of dominant
heights, quadratic mean diameters and densities. Summary
statistics and scientific names for the species are given in
Table 1.

2.3 Methods

To estimate the coefficients of the self-thinning rule, we used
linear quantile regression (Koenker and Bassett 1978).
Quantile regression is a method for estimating functional
relationships for all proportions of the probability distribution,
i.e. equations estimate the conditional median or quantiles of
the response variable. Quantile regression is especially useful
when extremes are important and for data with unequal vari-
ance. Unequal variance implies that there is more than a single
slope (rate of change) between a response variable and a
predictor variable. Quantile regressionmakes no distributional
assumption about the error term and therefore offers consid-
erable model robustness against outliers (Cade and Noon
2003). Since the self-thinning line is a limiting boundary, we
fit models to the 0.9, 0.95 and 0.99 quantile. Slopes obtained
at the extremer quantiles were then tested against slopes at the
median (Koenker and Bassett 1982).

The coefficients of the competition-density rule were esti-
mated using nonlinear regression. We estimated the four-
parameter model according to Eq. 1. To obtain the three-
parameter competition-density rule, we inserted (a) Reineke’s
slope, −1.605, and (b) the species-specific slopes obtained from
quantile regression (quantile=0.95) into Eq. 1. We estimated
the remaining parameters by the generalized method of mo-
ments (Hansen 1982) in the three-parameter competition-den-
sity rule. Generalized method of moments is an estimation
procedure that allows models to be specified, while avoiding
unwanted assumptions, such as specifying a particular distribu-
tion. Generalized method of moments is a robust procedure and
is recommended for heteroscedastic data, where a particular
weighting scheme is difficult to determine. The four-parameter
model was fit using least squares estimation—the model
contained too many parameters to be estimated by generalized
method of moments (GMM). Both, three- and four-parameter
models were weighted by stem number. From the four-
parameter model, we calculated intercept (Eq. 3) and slope
(Eq. 4) of the Reineke rule as proposed by Sterba (1987) and
compared the results to slopes obtained by quantile regression.

3 Results

3.1 Self-thinning rule

Because we were seeking the self-thinning boundary line, the
highest quantile that had significant parameters was chosen.
Models were fit to the 0.99 quantile for the six most frequent
species, which are Norway spruce, European beech, Scots
pine, European larch, oak and Austrian pine. Models were
fit to the 0.95 quantile for the following four species: silver fir,
ash, stone pine and hornbeam. For the remaining five species,
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which occur on less than 100 plots, we were not able to fit a
model to the extreme quantiles. Model coefficients are given
in Table 2. The quantile regression models fitted the data well.
As an example, the models for Norway spruce and ash are
shown in Fig. 1.

In order to be able to compare the models of all ten species
for which models could be fit, we compared the self-thinning
line at the 0.95 quantile. For all species except stone pine
(intercept=11.62; slope=−1.50), the intercept ranged between
12.41 and 13.25 and the slope ranged between −1.63 and
−2.00 (Table 2). Slopes for Norway spruce, European larch
and European beech were significantly different from
Reineke’s slope. Maximum (potential) stem number (Fig. 2)
and maximum (potential) basal area (Fig. 3) for different tree
species are also compared at the 0.95 quantile. In the left
panels, the conifer species (Figs. 2a and 3a) and in the right
panels broadleaf species (Figs. 2b and 3b) are plotted. For a
given quadratic mean diameter, potential density (stem num-
ber, basal area) is highest for Austrian pine and Norway
spruce, followed by silver fir and Scots pine. Potential density
is considerably lower for European larch, stone pine and all
broadleaf species. For the broadleaf species beech, ash and
hornbeam have higher potential stem numbers and basal areas
than oak. For larch and broadleaf species, the maximum basal
area is almost constant over quadratic mean diameter, because
of the very steep slope of the self-thinning rule estimated for
these species—a slope of −2 means a constant basal area over
the whole range of quadratic mean diameters. As would be
expected, the intercept slightly increases with increasing
quantile. These small differences in intercept however cause
large differences of 5–21 m2 ha−1 in maximum basal area.

Slopes of the self-thinning lines estimated at the 0.95
quantile were steeper than the slopes at the median except
for oak and Scots pine. These differences were however only
significant for Norway spruce and European beech.

3.2 Competition-density rule

The competition-density rule (Tables 3 and 4) estimates the
relationship between stem number and quadratic mean diam-
eter for a variety of densities. In smaller stands (dominant
height=15 m), quadratic mean diameter decreases nearly lin-
early with increasing density. In larger stands (dominant
height=35 m), competition acts more severely even with
lower stem numbers, and therefore, the decrease is more
sharp, till it levels off at higher densities (Fig. 4).

To compare the potential densities estimated by the
competition-density rule to those obtained from the self-
thinning rule, we calculated maximum basal areas. For the
three-parameter competition-density rule, the rate of increase
in maximum basal area with quadratic mean diameter depends
on the slope of the self-thinning line inserted into the model.
For most species, the slope estimated from the Austrian
National Forest Inventory is steeper than Reineke’s slope
(−1.605) (Table 2). The increase in maximum basal area
with quadratic mean diameter is therefore smaller than
with Reineke’s slope. Reineke’s slope corresponds more
closely to the slope estimated at the median or to the
slope estimated from the four-parameter competition-density
rule.

Plotting the maximum basal areas by species results in a
similar ranking as for the self-thinning rule. Obvious

Table 2 Shade tolerance on a 1 (=shade tolerant) to 9 (=shade intolerant)
scale and coefficients of the self-thinning rule at the median, at the 0.95
quantile, at the 0.99 quantile and coefficients for the self-thinning rule

obtained from the competition-density rule according to Sterba (1987).
For sample size, see Table 1

Species Shade
tolerancea

Q 0.5 Q 0.95 Q 0.99 CD rule

c0 c1 c0 c1 c0 c1 c0 c1

Norway spruce (5) 11.57 −1.542 12.86 −1.753 12.94 −1.716 12.19 −1.589
Silver fir (3) 11.45 −1.574 12.41 −1.633
European larch (8) 11.27 −1.744 13.00 −1.936 13.60 −2.053 11.04 −1.352
Scots pine (7) 12.30 −1.764 12.77 −1.750 12.93 −1.762 11.52 −1.375
Austrian pine (7) 12.37 −1.711 13.20 −1.845 12.25 −1.488
Stone pine (7) 9.92 −1.194 11.62 −1.500
European beech (3) 11.86 −1.701 13.25 −1.941 13.28 −1.891 12.56 −1.791
Common oak (7) 12.07 −1.904 12.62 −1.800 12.93 −1.850 12.08 −1.739
Hornbeam (4) 10.36 −1.184 13.33 −2.000
Ash (4) 11.22 −1.705 13.22 −1.939
Birch (7) 11.58 −1.883
Grey alder (6) 9.27 −0.753

a Shade tolerance according to Ellenberg et al. (2003) on a 1 to 9 scale. Shade tolerance for all tree species is given in parenthesis to indicate that shade
tolerance refers to shade tolerance during regeneration but may differ in mature stands
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differences in ranking are however the ranking of stone pine
and ash and hornbeam in the three-parameter model fit using
Reineke’s slope in comparison to the other two models (self-
thinning rule with quantile regression, three-parameter com-
petition-density rule using the slope from the ANFI). In that
model, stone pine attains as high basal areas as Scots pine,
whereas ash has a lower basal area than oak in that model. For
a number of broadleaf species, maximum basal areas could
only be attained from the three-parameter competition-density
rule using Reineke’s coefficient. The ranking in maximum
basal area of broadleaf species for that model were high basal
areas for a given dominant height for grey alder, hornbeam,

black alder, and birch. However, all four species seldom reach
dominant heights of more than 20 m. Followed by sycamore,
European beech, oak and black locust. As mention before, the
smallest basal area for that model is obtained for ash.

4 Discussion

4.1 Self-thinning rule

The intercept and slope estimated from the Austrian National
Forest Inventory represents the species boundary line, i.e. the

Fig. 1 Plot of stem number over quadratic mean diameter for Norway spruce and ash. Dots indicate the observations of the Austrian National Forest
Inventory. The lines show the self-thinning line (Reineke rule), fit using quantile regression. Solid line, q=0.95; dashed line, q=0.99
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“overall” maximum density of that species in Austria. This
overall maximum is remarkably similar over large geographic
areas or sampling methods (inventory, permanent research
plots). For example, maximum densities (basal area, SDI)
obtained for Norway spruce and Scots pine from inventory
data in Austria are almost identical to those obtained from
permanent research plots for spruce in Bavaria (Pretzsch and
Biber 2005) or Scots pine in Spain (Del Rio et al. 2001).
Similarly, Zhang et al. (2013) evaluated the self-thinning line
of ponderosa pine using inventory data and permanent re-
search plots. They found both dataset to be adequate, although
the inventory data yielded higher intercepts and more negative
slopes.

Since the intercept of the self-thinning line increases with
productivity (Bi 2001; Weiskittel et al. 2009), the self-thinning
line thus estimated may be adequate for the most productive
stand in the group, but for many stands, it is certainly
overestimated (Bi 2001). Bi (2001), for example, found that
changes with site productivity were 11 % of magnitude of the
range for species. Differences in site productivity (poorer soil or
climate conditions) might also explain why maximum basal
area obtained from Finnish stands (Hynynen 1993) is not as
high as obtained for Austria. Site index has been identified as a
key factor affecting the intercept of the self-thinning line. Other
factors associated with significant changes in the intercept were
stand origin or purity of stands (Weiskittel et al. 2009).
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Fig. 3 The self-thinning rule (Reineke rule) fitted from the Austrian National Forest Inventory using quantile regression (q=0.95). The plot shows
maximum basal area over quadratic mean diameter for conifer (a, left panel) and deciduous (b, right panel) species

Table 3 Coefficients of the three-
parameter competition-density
rule using Reineke’s coefficient
(−1.605). For sample size, see
Table 1

Species a0 a1 b0 Root MSE R2 Adj. R2

Norway spruce 1.522 10-6 0.6493 0.8882 96.4 0.90 0.90

Silver fir 1.917 10-6 0.6670 0.9215 99.8 0.88 0.88

European larch 2.526 10-6 0.6961 0.8278 87.3 0.87 0.87

Scots pine 2.682 10-6 0.5600 0.4717 89.1 0.86 0.86

Austrian pine 3.778 10-6 0.4382 0.2113 100 0.80 0.80

Stone pine 3.471 10-6 0.6940 0.4645 85.7 0.82 0.81

European beech 1.806 10-6 0.6921 1.0364 93.1 0.89 0.89

Common oak 2.733 10-6 0.5922 0.6260 112 0.71 0.71

Hornbeam 1.061 10-6 0.6689 1.1904 82.7 0.78 0.78

Ash 8.719 10-7 0.9370 4.0332 87.9 0.86 0.85

Sycamore 1.195 10-6 0.8475 1.9154 97.3 0.80 0.79

Black locust 2.004 10-6 0.5696 0.8257 63.1 0.75 0.74

Birch 1.630 10-6 0.5913 0.8692 73.9 0.69 0.68

Black alder 1.136 10-6 0.7777 1.6379 95.8 0.81 0.80

Grey alder 1.326 10-6 0.6109 0.7958 82.5 0.80 0.79
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Our results did again confirm the hypothesis of species-
specific slopes, the range of coefficients is however small.
Species-specific slopes have been attributed to differences in
shade tolerance and the ability to colonize space and the huge
diversity in the geometry of trees (Pretzsch and Biber 2005;
Charru et al. 2012). However, in our dataset, we could not find
a ranking of slopes with shade tolerance (Table 2). However,
in accordance with other studies, we found steeper slopes for
broadleaf species than for conifer species (Pretzsch and Biber
2005; Charru et al. 2012). A species that does not fit into this
general pattern is larch with a slope as steep as for broadleaf
species. Note again that a steep slope results in almost constant
maximum basal areas over a wide range of quadratic mean
diameters.

In general, the slopes estimated from this study are steeper
than the slope of −1.605 proposed by Reineke. This agrees well
with many other studies which find steeper slopes, which are at
least for some species significantly different from Reineke’s

coefficient (Sterba 1987; Del Rio et al. 2001; Pretzsch and
Biber 2005). These results are not surprising, since even the
re-analysis of Reineke’s data using standard statistical methods
provided a steeper slope, −1.707, than originally proposed by
Reineke (MacKinney and Chaikenen 1935 in Zeide 2010).
Furthermore, the slopes found in this study are within the range
of slopes found in the literature (Table 5).

Although the slopes vary a little, the intercept which con-
trols maximum density varies by species. To date, species-
specific intercepts for many species were lacking. This might
have been partly due to the methodology. Historically, the
self-thinning line has first been fit by hand due to the lack of
computing tools. Later approaches selected plots at maximum
density and OLS regression was fit to the data points. The
choice of appropriate plots is however an arbitrary one. Newer
statistical techniques, such as quantile regression or statistic
frontier functions, provide a more objective way of fitting the
self-thinning line. With these methods, all plots can be kept
whatever their density and because these techniques use the
whole range of data, functions for many species can be fit.
Both techniques have previously been successfully applied to
fitting the self-thinning line (Bi 2001; Zhang et al. 2005, 2013;
Weiskittel et al. 2009; Charru et al. 2012).

In this study, we were interested in the species self-thinning
boundary. Statistically, this corresponds to fitting a marginal
model, for which linear quantile regression is an appropriate
choice. Because the data of the Austrian National Forest
Inventory was remeasured five times, also conditional models

Table 4 Coefficients of the three-
parameter competition-density
rule using species-specific coeffi-
cients estimated from the data of
the Austrian National Forest In-
ventory using quantile regression
(quantile=0.95). For sample size,
see Table 1

a0 a1 b0 Root MSE R2 Adj. R2

Norway spruce 8.828 10-7 0.8374 1.0570 95.6 0.90 0.90

Silver fir 1.401 10-6 0.7685 1.0487 99.0 0.88 0.88

European larch 5.602 10-7 1.2205 1.2948 90.3 0.86 0.86

Scots pine 9.961 10-7 0.9188 0.7845 93.8 0.85 0.85

Austrian pine 2.349 10-6 0.6160 0.2736 101 0.79 0.79

Stone pine 9.432 10-6 0.3108 0.3228 85.2 0.82 0.82

European beech 2.247 10-7 1.3975 2.2454 93.3 0.89 0.89

Common oak 1.308 10-6 0.8536 0.7991 110 0.72 0.72

Hornbeam 2.338 10-7 1.2802 1.5925 81.4 0.79 0.78
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Fig. 4 Competition-density lines for Norway spruce obtained by fitting
the competition-density rule to the data of the Austrian National Forest
Inventory. The plot shows the decrease in quadratic mean diameter with
increasing stem number for a given dominant height

Table 5 Slopes of the self-thinning rule found in the literature

Species Min Mean Max

Norway spruce −1.30 −1.61 −1.88
Silver fir −1.78
Scots pine −1.55 −1.71 −1.84
European beech −1.60 −1.79 −1.94
Oak −1.34 −1.70 −1.92

Literature used: Hynynen 1993; Del Rio et al. 2001; Pretzsch and Biber
2005; Rivoire and Le Moguede 2012; Charru et al. 2012
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using quantile mixed models (Geraci and Bottai 2007) includ-
ing a random plot effect could be fit to the data. Figure 5
compares the two methods for Norway spruce and ash. From
the figure, it can be seen that the borderline relationship is
better described by the marginal model.

We estimated the self-thinning model of Reineke. One
important reason is that it can be directly linked to the
competition-density rule, i.e. the parameters are required to

estimate the three-parameter competition-density rule. Also,
Reineke’s rule is the most popular model for self-thinning.
Slightly but consistently more precise models are the models
presented by Nilson (1973, 2006 in Zeide 2010). Other ap-
proaches model directly the self-thinning trajectory of indi-
vidual stands (Vanclay and Sands 2009). A comprehensive
overview of different approaches to model self-thinning is
given by Zeide (2010).
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Norway spruce, the right panel shows the models for ash. For ash, the
four-parameter model could not be fit, because of insufficient data
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4.2 Competition-density rule

The competition-density rule represents the average decrease
in quadratic mean diameter with increasing stem number for a
given dominant height. It can therefore be used in stand
density management diagrams as well as for the construction
of yield tables. When fitting the four-parameter competition-
density rule, the high inter-correlation of the parameters, in
particular of a0 and a1, is an obstacle. To fit the four-parameter
competition-density rule, a large number of plots is required
for fitting and it is impossible to fit it for minor species. With
the three-parameter model and a robust estimation technique,
such as the generalized methods of moments estimation, the
competition-density rule can also be fit for minor species. One
problem however is the choice of an appropriate self-thinning
slope for the competition-density rule. Species-specific slopes
from the Austrian National Forest Inventory seem to be the
best choice because then the slope of the competition-density
rule and self-thinning rule agree at potential density. However,
there are a number of species such as sycamore, black locust,
birch and alder for which the self-thinning rule could not be
fit, because there was insufficient data. Here, using Reineke’s
slope might be an appropriate choice.

In comparison to other models’ fit for Norway spruce
(Döbbeler 2004; Eckmüllner and Vospernik 2005; Sterba
1975), silver fir (Döbbeler 2004), European larch (Tumler
1992), Scots pine (Döbbeler 2004; Schnedl 2003), stone
pine (Lick and Sterba 1991), European beech (Schnedl
2003; Döbbeler 2004) and oak (Döbbeler 2004), the
three-parameter model fit from the Austrian National For-
est Inventory yields higher maximum basal areas. The only
exception is a model for Norway spruce in south-eastern
Germany (Döbbeler 2004). These higher basal areas might
be partly due to the yield level of the region and partly to
the estimation method. Yield level as defined by Assmann
(1970) is the phenomenon that stands at a given site index,
age and treatment still may vary considerably in growth.
This is a result of varying potential densities at given site
indices (Franz 1967; Sterba 1987). Thus, higher potential
basal areas as they result for the competition-density rule
indicate a higher yield level, which is a well-known fact for
Austrian sites, compared to many German ones. Similarly,
south-eastern Germany, where maximum basal areas ob-
tained for Norway spruce are higher than those for Austria,
is a region known for its especially high yield level
(Assmann 1970, p. 171).

In most other studies, the competition-density rule was
estimated using OLS. Differences in estimated parameters,
R2 and MSE between OLS and GMM are very small, and
both models result in almost identical maximum stem num-
bers and basal areas. The major advantage of GMM is that it is
more robust and that models can be fit for minor species,
where otherwise OLS estimation may result in illogical model

behaviour. In contrast to the estimation method, weighting
with stem number considerably influences estimation results.
Maximum basal areas from the weighted models are 0–
11 m2 ha−1 higher.

4.3 Comparison between self-thinning rule
and competition-density rule

Potential density can be obtained from both self-thinning rule
and competition-density rule. Figure 6 shows maximum basal
areas for Norway spruce and ash obtained for the two species.
In detail, it compares the self-thinning line at the 0.95 quantile
to (i) the three-parameter competition-density model using
Reineke’s slope, (ii) the three-parameter competition-density
model using the slope from the Austrian National Forest
Inventory and (iii) the four-parameter competition-density
rule. Obviously, if the slope of the ANFI is inserted into the
competition-density rule, the resulting maximum basal area
line is parallel to the maximum basal area line obtained from
the self-thinning slope. As noted in the discussion on the
competition-density rule, the slope obtained from the four-
parameter model is usually steeper than the slope obtained
from the ANFI, and therefore, the increase in maximum basal
area with quadratic mean diameter is higher and more similar
to the three-parameter model using Reineke’s slope. The
ranking of intercepts of different modelling approaches varies
between species, and there is no evidence that any of the
models consistently yields highermaximum basal areas. Thus,
we assume that, if both rules are fit from the same dataset and
if the competition-density rule is set equal to the self-thinning
rule at potential density, as we do, it is reasonable to assume
that both ways to characterize potential density are valid.
Similarly, Huber et al. (2014) also found both ways to char-
acterize potential density to be adequate. An important differ-
ence between the two models is the variables in the model: in
the self-thinning model, the only variable is quadratic mean
diameter (Eq. 2). Since it is the only variable in the model, it is
a combined measure of age, site quality and stand treatment
(Pretzsch 2005). Variables in the competition-density model
are dominant height and quadratic mean diameter. Dominant
height is largely independent of stand density. Therefore, at a
given site, it is a good indicator of age, and quadratic mean
diameter can then be interpreted as a measure of stand treat-
ment. From a practical point of view, the competition-density
rule is more widely applicable. It does provide not only
estimates of potential density but also estimates of mean
dimensions at a given dominant height for stand densities
deviating from the potential density. These mean dimensions
are for example required for yield tables, stocking guides and
assortment tables (e.g. Sterba 1983; Eckmüllner and
Vospernik 2005; Castedo-Dorado et al. 2009). If the major
interest is in potential densities, the self-thinning line might be
more easy to fit. Also it does not require height measurements.
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5 Conclusions

The self-thinning rule is a well-known model of potential
density. The self-thinning boundary line can be fit using
quantile regression. In principle, the highest quantile that can
be fit to the data is closest to the boundary. However, high
quantiles can only be fit for few tree species, for which
sufficient data is available. Fitting a model to the 0.95 quantile
is therefore useful for practical applications, e.g. potential
densities for the calculation of species proportions, because
it facilitates the comparison between species. Self-thinning
boundaries would be even more useful, if the self-thinning
frontier could be estimated for individual stands. The
competition-density rule is the more flexible andmore broadly
applicable model. It does provide not only potential densities
but also mean dimensions required for many practical appli-
cations. However, unless the dataset is large, it cannot be fit
without knowledge of the self-thinning slope. To assure con-
sistency between self-thinning rule and competition-density
rule, the same slope should be used for both models.
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